# FINAL INDUSTRIAL MARKAGE REGION

TASK 5. Developing a Policy Evaluation Framework and Assessing the Implications

**APRIL 2018** 



technical report

# Southern California Association of Governments Industrial Warehousing Study

Task 5. Developing a Policy Evaluation Framework and Assessing the Implications

*prepared for* Southern California Association of Governments

prepared by

Cambridge Systematics, Inc. 555 12th Street, Suite 1600 Oakland, CA 94607

with

Gill V. Hicks and Associates, Inc.

*date* April 2018

# **Table of Contents**

| Exec | utive | Summary                                                                        | .ES-1  |
|------|-------|--------------------------------------------------------------------------------|--------|
|      | Task  | Goals and Outputs                                                              | . ES-1 |
|      | Eval  | uation Framework                                                               | . ES-1 |
| 1.0  | Eval  | uation Framework                                                               | 1-1    |
|      | 1.1   | A Recap of Warehousing-Related Industry Trends                                 | 1-1    |
|      | 1.2   | A Recap of Baseline Scenario of Warehouse Space Forecasting Model              | 1-3    |
|      | 1.3   | Warehousing-Related Alternate Scenarios                                        | 1-3    |
|      | 1.4   | Using the Warehouse Space Forecasting Model for Alternate Scenario<br>Analysis | 1-9    |
| 2.0  |       | nate Scenarios Evaluation, Impacts Assessment, and Policy<br>cations           | 2-1    |
|      | 2.1   | Evaluation of Alternate Scenarios                                              | 2-1    |
|      | 2.2   | Travel Impacts and Air Quality Impacts Assessment                              | . 2-18 |
|      | 2.3   | Findings, and Policy and Decision-Making Implications                          | 2-32   |

## List of Tables

| Table ES.1 | Alternate Scenario Definitions, and Inputs and Calculations in the Warehouse Space Forecasting Model                                                                                            | ES-2  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Table ES.2 | SCAG Region-Level Warehousing Space Forecasting Model Key<br>Results, 2040 <i>Millions of Square Feet</i>                                                                                       | ES-7  |
| Table ES.3 | Unconstrained Occupied Warehouse Space by Cargo Submarket, 2014 and 2040 by Alternate Scenario <i>Millions of Square Feet</i>                                                                   | ES-8  |
| Table ES.4 | Constrained Occupied Warehousing Space by Submarket Area, 2014<br>and 2040 by Alternate Scenario <i>Millions of Square Feet</i> E                                                               | S-10  |
| Table ES.5 | Constrained Occupied Warehousing Space-Related Daily Truck Trips<br>Generated by Cargo Market Type, 2014 and 2040 by Alternate<br>Scenario <i>Thousands</i>                                     | S-13  |
| Table ES.6 | Constrained Occupied Warehousing Space-Related Daily Truck VMT<br>for Truck Trips Generated by Cargo Market Type, 2014 and 2040 by<br>Alternate Scenario <i>Thousands</i>                       | ES-14 |
| Table ES.7 | Constrained Occupied Warehousing Space-Related Regional Total<br>Emissions Due to Truck Trips in Tons per Day by Air Pollutant Type,<br>2014 and 2040 by Alternate Scenario <i>Tons per Day</i> | S-16  |
| Table ES.8 | Policy and Decision-Making Implications to Stakeholders under<br>Alternate ScenariosE                                                                                                           | S-19  |
| Table 1.1  | Definitions of Border-Crossing-Related "High-Volume" and "Low-<br>Volume" Growth Scenarios                                                                                                      | 1-7   |
| Table 1.2  | Alternate Scenario-Specific Inputs and Calculations in the Warehouse Space Forecasting Model                                                                                                    | 1–11  |
| Table 1.3  | Modified A-Y Equation-Based Efficiency Parameters under All<br>Alternate Scenarios for Warehousing                                                                                              | 1-14  |
| Table 1.4  | Daily Heavy-Duty Truck Trip Generation Rate by Warehouse Type                                                                                                                                   | 1-16  |
| Table 1.5  | Assumptions on Average Distance Traveled per Truck Trip by Cargo<br>Market Type and Submarket Area <i>Miles</i>                                                                                 | 1-18  |
| Table 2.1  | SCAG Region-Level Warehousing Space Forecasting Model Key<br>Results, 2040 <i>Millions of Square Feet</i>                                                                                       | 2-3   |
| Table 2.2  | Unconstrained Warehoused Loads by Cargo Submarket, 2014 and 2040 by Alternate Scenario <i>Millions of TEUs</i>                                                                                  | 2-8   |
| Table 2.3  | Unconstrained Occupied Warehouse Space by Cargo Submarket, 2014 and 2040 by Alternate Scenario <i>Millions of Square Feet</i>                                                                   | 2-9   |
|            |                                                                                                                                                                                                 |       |

| Table 2.4  | 2014-2040 Minimum and Maximum Growth in Unconstrained<br>Occupied Warehouse Space by Cargo Market across Alternate<br>Scenarios                                             | 2-11   |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Table 2.5  | Percentage Demand in Occupied Warehouse Space Met by Cargo<br>Submarket, 2014 and 2040 by Alternate Scenario <i>Percentage</i>                                              | 2-12   |
| Table 2.6  | Constrained Occupied Warehousing Space by Submarket Area, 2014 and 2040 by Alternate Scenario <i>Thousands of Square Feet</i>                                               | 2-15   |
| Table 2.7  | Constrained Occupied Warehousing Space-Related Daily Truck Trips<br>Generated by Cargo Market Type, 2014 and 2040 by Alternate<br>Scenario <i>Thousands</i>                 | .2-20  |
| Table 2.8  | Constrained Occupied Warehousing Space-Related Daily Truck VMT for Truck Trips Generated by Cargo Market Type, 2014 and 2040 by Alternate Scenario <i>Thousands</i>         | 2-21   |
| Table 2.9  | Constrained Occupied Warehousing Space-Related Daily Truck Trips<br>Generated by Submarket Area, 2014 and 2040 by Alternate<br>Scenario <i>Thousands</i>                    | . 2-24 |
| Table 2.10 | Constrained Occupied Warehousing Space-Related Daily Truck VMT for Truck Trips Generated by Submarket Area, 2014 and 2040 by Alternate Scenario <i>Thousands</i>            | 2-27   |
| Table 2.11 | Constrained Occupied Warehousing Space-Related Regional Total<br>Emissions Due to Truck Trips in Tons per Day by Air Pollutant Type,<br>2014 and 2040 by Alternate Scenario | 2-31   |
| Table 2.12 | Policy and Decision-Making Implications to Stakeholders under<br>Alternate Scenarios                                                                                        | . 2-35 |

# **List of Figures**

| Figure ES.1 | Alternate Scenarios Comparison of Southern California Association of<br>Government (SCAG) Region-Level Warehousing Space Forecasts,<br>2014 versus 2040 Unconstrained versus 2040 Constrained <i>Millions</i><br>of Square Feet | S-6  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure ES.2 | Regional Occupied Warehousing Space-Related Daily Truck Trips<br>Distribution by Cargo Market Type under Baseline Scenario, 2014<br>and 2040 Constrained                                                                        | 6-15 |
| Figure ES.3 | Regional Occupied Warehousing Space-Related Daily Truck VMT<br>Distribution by Cargo Market Type under Baseline Scenario, 2014<br>and 2040 Constrained                                                                          | 6-15 |
| Figure 2.1  | Alternate Scenarios Comparison of SCAG Region-Level Warehousing<br>Space Forecasts, 2014 versus 2040 Unconstrained versus 2040<br>Constrained <i>Millions of Square Feet</i>                                                    | 2-2  |
| Figure 2.2  | Alternate Scenarios Comparison of SCAG Region-Level<br>Unconstrained Warehousing Space Forecasts, 2014-2040 <i>Millions</i><br>of Square Feet                                                                                   | 2-6  |
| Figure 2.3  | Alternate Scenarios Comparison of SCAG Region-Level Constrained Warehousing Space Forecasts, 2014-2040 <i>Millions of Square Feet</i>                                                                                           | 2-7  |
| Figure 2.4  | Regional Occupied Warehousing Space-Related Daily Truck Trips<br>Distribution by Cargo Market Type under Baseline Scenario, 2014<br>and 2040 Constrained 2                                                                      | -22  |
| Figure 2.5  | Regional Occupied Warehousing Space-Related Daily Truck VMT<br>Distribution by Cargo Market Type under Baseline Scenario, 2014<br>and 2040 Constrained                                                                          | -23  |

## **Executive Summary**

#### TASK GOALS AND OUTPUTS

This technical report (or the report) describes the primary work conducted under Task 5, which consisted of:

- Developing an evaluation framework for warehousing-related public scenario planning and policy-making. This includes:
  - A recap of the industry trends, as identified in the Task 3 report of this study;
  - A recap of the baseline scenario, as defined in the Task 4 report of this study;
  - Definitions of warehousing-related alternate scenarios that relate to industry trends, alternate freight forecasts, and state and local policies;
  - Identification of assumptions that implement the alternate scenarios in the warehouse space forecasting model; and
  - Approximate methodologies used for estimation of travel impacts and air quality impacts related to warehousing.
- Evaluates alternate scenarios in terms of future demand for warehouse space; and assesses their implications on travel, air quality, and warehouse-related policy and decision-making using the warehouse space forecasting model, which was improved as part of the Task 4 report of this study. This includes:
  - Results and findings of quantitative evaluation of alternate scenarios in terms of future occupied warehouse space at regional and submarket area level and at cargo market level;
  - Results and findings of quantitative assessment of future occupied warehouse space-related travel impacts and air quality impacts; and
  - Discussion of the implications of the alternate scenarios evaluation and impacts assessment on policy and decision-making of stakeholders.

#### **EVALUATION FRAMEWORK**

- Definitions of warehousing-related alternate scenarios, and differences in their inputs and calculations in the warehouse space forecasting model with respect to the baseline scenario are shown in Table ES.1.
- Using approximate methodologies for travel and air quality impacts estimation, the relative levels of impacts between alternate scenarios were compared.

| Alternate<br>Number | Alternate<br>Scenario Name                                                             | Definition                                                                                                                                                                                                                                                                                                      | Changes to Existing<br>User Controlled Inputs<br>in Relation to<br>Baseline Scenario                                     | New User<br>Controlled Inputs                                                                                                       | Changes to Nonuser Controlled<br>Calculations in Relation to<br>Baseline Scenario                                                                                                                                                                                                                      |
|---------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                   | Baseline Scenario<br>plus Efficiency Gain                                              | This examines the effect of<br>industry trends of growing<br>use of information<br>technology (IT) in cargo-<br>handling facilities and<br>increasing warehouse<br>automation to gain<br>operating efficiencies in<br>existing and new<br>developments                                                          | Modified Avison-Young<br>(A-Y) equation-based<br>efficiency parameters<br>for all new<br>developments                    | None                                                                                                                                | <ul> <li>Net efficiency gain<br/>calculation due to lowered<br/>footprint requirement for all<br/>cargo that are to be handled<br/>at new developments</li> </ul>                                                                                                                                      |
| 2                   | Baseline Scenario<br>plus Efficiency Gain<br>plus Replacement of<br>Obsolete Buildings | In addition to effect of Alt 1<br>(baseline scenario plus<br>efficiency gain), this<br>examines the effect of a<br>regional policy to support<br>replacement of older,<br>functionally obsolete<br>warehouse buildings with<br>newer and modern design<br>warehouse buildings to gain<br>operating efficiencies | Modified A-Y equation-<br>based efficiency<br>parameters for replaced<br>developments <u>and</u> all<br>new developments | Era definition of building<br>that becomes obsolete<br>by decade<br>Percentage of obsolete<br>inventory to be replaced<br>by decade | <ul> <li>Net efficiency gain<br/>calculation due to lowered<br/>footprint requirement for<br/>some of the existing cargo<br/>and all added cargo</li> <li>Added submarket area<br/>vacant space calculation due<br/>to lowered footprint<br/>requirement for some of the<br/>existing cargo</li> </ul> |

#### Table ES.1 Alternate Scenario Definitions, and Inputs and Calculations in the Warehouse Space Forecasting Model

| Alternate<br>Number              | Alternate<br>Scenario Name                                                     | Definition                                                                                                                         | Changes to Existing<br>User Controlled Inputs<br>in Relation to<br>Baseline Scenario | New User<br>Controlled Inputs                                                                   | Changes to Nonuser Controlled<br>Calculations in Relation to<br>Baseline Scenario                                                                       |
|----------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                | Baseline Scenario<br>plus Efficiency Gain<br>plus Increased Mega<br>RDCs Share | In addition to effect of Alt 1,<br>this examines the effect of<br>industry trend of increasing<br>share of mega regional           | Modified A-Y equation-<br>based efficiency<br>parameters for all new<br>developments | Mega RDCs cargo loads<br>percentage share of total<br>cargo loads by 2040                       | <ul> <li>Net efficiency gain<br/>calculation due to lowered<br/>footprint requirement for all<br/>added cargo</li> </ul>                                |
|                                  |                                                                                | distribution centers (RDC) in<br>new developments to gain<br>operating efficiencies and<br>economies of scale                      |                                                                                      |                                                                                                 | <ul> <li>Mega RDCs cargo loads<br/>percentage share of total<br/>cargo loads for interim years<br/>interpolation</li> </ul>                             |
|                                  |                                                                                |                                                                                                                                    |                                                                                      |                                                                                                 | <ul> <li>Reduced general purpose<br/>warehouse cargo and<br/>increased mega RDCs cargo</li> </ul>                                                       |
| plus Effi<br>plus Inc<br>Crossda | Baseline Scenario<br>plus Efficiency Gain<br>plus Increased<br>Crossdock       | In addition to effect of Alt 1,<br>this examines the effect of<br>industry trend of increasing<br>customer demand for              | Modified A-Y equation-<br>based efficiency<br>parameters for all new<br>developments | Crossdock transload<br>import cargo loads<br>percentage share of total<br>import cargo loads by | <ul> <li>Net efficiency gain<br/>calculation due to lowered<br/>footprint requirement for all<br/>added cargo</li> </ul>                                |
|                                  | Transloading Share                                                             | transloading and policy of<br>near-port municipalities to<br>preserve existing<br>warehousing land uses for<br>crossdock transload |                                                                                      | 2040                                                                                            | <ul> <li>Crossdock transload import<br/>cargo loads percentage<br/>share of total import cargo<br/>loads for interim years<br/>interpolation</li> </ul> |
|                                  |                                                                                | purposes to reduce shipper<br>costs of trucking, to improve<br>port throughput, and to<br>reduce storage space<br>needed           |                                                                                      |                                                                                                 | <ul> <li>Reduced Import warehouse<br/>and port-related RDC cargo<br/>loads due to increased<br/>crossdock transload import<br/>cargo loads</li> </ul>   |

| Alternate<br>Number | Alternate<br>Scenario Name                                                                                    | Definition                                                                                                                                                                                                                                                                                                                                                                                                            | Changes to Existing<br>User Controlled Inputs<br>in Relation to<br>Baseline Scenario  | New User<br>Controlled Inputs                                                                                                                                                    | Changes to Nonuser Controlled<br>Calculations in Relation to<br>Baseline Scenario                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                   | Baseline Scenario<br>plus Efficiency Gain<br>plus Increased<br>E-commerce and<br>Fulfillment Centers<br>Share | In addition to effect of Alt 3<br>(baseline scenario plus<br>efficiency gain plus<br>increased mega RDCs), this<br>examines the effect of<br>industry trend of increasing<br>demand for e-commerce<br>and fulfillment centers<br>(assumed to use mega<br>RDCs) to reduce customer's<br>cost of goods, while also<br>reducing time for delivery<br>(approaching a retail store<br>purchase of same day or<br>two days) | Modified A-Y equation-<br>Obased efficiency<br>parameters for all new<br>developments | Mega RDCs cargo loads<br>percentage share of total<br>cargo loads by 2040<br>Fulfillment center type<br>mega RDC space<br>percentage share of total<br>mega RDC space by<br>2040 | <ul> <li>Net efficiency gain<br/>calculation due to lowered<br/>footprint requirement for all<br/>added cargo</li> <li>Mega RDCs cargo loads<br/>percentage share of total<br/>cargo loads for interim years<br/>interpolation</li> <li>Fulfillment center type mega<br/>RDC space percentage share<br/>of total mega RDC space for<br/>interim years interpolation</li> <li>Reduced general purpose<br/>warehouse cargo loads due<br/>to increased mega RDCs<br/>cargo loads</li> </ul> |
| 6                   | Baseline Scenario<br>plus Efficiency Gain<br>plus Lower Border<br>Crossing Growth<br>Scenario                 | In addition to effect of Alt 1,<br>this examines the effect of<br>alternate border-crossing<br>freight forecast as a result of<br>many reasons, including<br>industry's reduced use of<br>near-shoring strategy and<br>lower public and private<br>investment in border-<br>crossing infrastructure than<br>the baseline scenario                                                                                     | Modified A-Y equation-<br>based efficiency<br>parameters for all new<br>developments  | Border-crossing-related<br>"low-volume" scenario<br>origin-destination freight<br>flows data and forecasts                                                                       | <ul> <li>Net efficiency gain<br/>calculation due to lowered<br/>footprint requirement for all<br/>added cargo</li> <li>Conversion of truck flows to<br/>loads and interim years<br/>interpolation</li> <li>Adjustment of port-related<br/>flows to keep international<br/>freight flows a constant</li> </ul>                                                                                                                                                                            |

| Alternate<br>Number | Alternate<br>Scenario Name                                                                     | Definition                                                                                                                                                                                                                                                                                                                           | Changes to Existing<br>User Controlled Inputs<br>in Relation to<br>Baseline Scenario | New User<br>Controlled Inputs                                                                               | Changes to Nonuser Controllec<br>Calculations in Relation to<br>Baseline Scenario                                                                                                                                                                                                                             |
|---------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7                   | Baseline Scenario<br>plus Efficiency Gain<br>plus Higher Border<br>Crossing Growth<br>Scenario | In addition to effect of Alt 1,<br>this examines the effect of<br>alternate border-crossing<br>freight forecast as a result of<br>many reasons, including<br>industry's increased use of<br>near-shoring strategy and<br>higher public and private<br>investment in border-<br>crossing infrastructure than<br>the baseline scenario | Modified A-Y equation-<br>based efficiency<br>parameters for all new<br>developments | Border-crossing-related<br>"high-volume" scenario<br>origin-destination freight<br>flows data and forecasts | <ul> <li>Net efficiency gain<br/>calculation due to lowered<br/>footprint requirement for all<br/>added cargo</li> <li>Conversion of truck flows to<br/>loads and interim years<br/>interpolation</li> <li>Adjustment of port-related<br/>flows to keep international<br/>freight flows a constant</li> </ul> |
| 8                   | Baseline Scenario<br>plus Efficiency Gain<br>plus Increased<br>Developable Space               | In addition to effect of Alt 1,<br>this examines the effect of<br>local land use policy<br>changes by converting<br>more land from<br>nonindustrial to industrial<br>use                                                                                                                                                             | Modified A-Y equation-<br>based efficiency<br>parameters for all new<br>developments | Additional developable<br>space in building area                                                            | <ul> <li>Net efficiency gain<br/>calculation due to lowered<br/>footprint requirement for all<br/>added cargo</li> </ul>                                                                                                                                                                                      |

Source: Cambridge Systematics, Inc.

Note: Added cargo = forecast minus existing cargo; New development = New warehouse building constructed on planned industrial land or developable space for warehousing; and Replaced development = New warehouse building constructed on industrial land with existing obsolete warehouse building. All" developments refer to warehouse buildings belonging to all cargo markets and functional uses; not just the cargo market or functional use that the alternate scenario is defined for.

Alternate scenarios Alt 2 to Alt 8 include the effects of Alt 1, which is efficiency gain for all new developments or added cargo; thus, Alt 1 scenario also can be considered as a modified baseline scenario.

### Alternate Scenarios Future Occupied Warehouse Space Evaluation Results of the Model

Figure ES.1 and Table ES.2 show model results for region-level demand for warehouse space under unconstrained supply and constrained supply conditions in 2014 and 2040 scenarios, which was used to compare supply shortfall across the scenarios.

Table ES.3 and Table ES.4 show the model results for region-level demand for warehouse space under unconstrained supply and constrained supply conditions in 2014 and 2040 scenarios by cargo submarket type and by submarket area, respectively, which was used to compare cargo submarket type and submarket area shares of the total across the scenarios.

#### Figure ES.1 Alternate Scenarios Comparison of Southern California Association of Government (SCAG) Region-Level Warehousing Space Forecasts, 2014 versus 2040 Unconstrained versus 2040 Constrained *Millions of Sauare Feet*



Source: SCAG Warehousing Space Forecasting Model, Draft Version 1.0, June 30, 2016.

Note: The Alternate Scenario are as follows: Alt 0: Baseline Scenario, Alt 1: Baseline Scenario plus Efficiency Gain, Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings, Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share, Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share, Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario, Alt 7: Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario and Alt 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

| Alternate<br>Number | Alternate Scenario Name                                                                                 | 2040<br>Unconstrained<br>Occupied<br>Warehousing<br>Space | 2040<br>Constrained<br>Occupied<br>Warehousing<br>Space | Shortfall in<br>Occupied<br>Warehousing<br>Space | First Year<br>of Shortfall<br>>5 Million<br>Square Feet |
|---------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|
| 0                   | Baseline                                                                                                | 1,809                                                     | 1,514                                                   | 295                                              | 2029                                                    |
| 1                   | Baseline Scenario plus<br>Efficiency Gain                                                               | 1,640                                                     | 1,514                                                   | 126                                              | 2035                                                    |
| 2                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Replacement of Obsolete<br>Buildings                  | 1,547                                                     | 1,547                                                   | 0                                                | N/Aª                                                    |
| 3                   | Baseline Scenario plus<br>Efficiency Gain plus Increased<br>Mega RDCs Share                             | 1,503                                                     | 1,503                                                   | 0                                                | N/Aª                                                    |
| 4                   | Baseline Scenario plus<br>Efficiency Gain plus Increased<br>Crossdock Transloading<br>Share             | 1,611                                                     | 1,514                                                   | 97                                               | 2036                                                    |
| 5                   | Baseline Scenario plus<br>Efficiency Gain plus Increased<br>E-commerce and Fulfillment<br>Centers Share | 1,491                                                     | 1,491                                                   | 0                                                | N/Aª                                                    |
| 6                   | Baseline Scenario plus<br>Efficiency Gain plus Lower<br>Border Crossing Growth<br>Scenario              | 1,640                                                     | 1,508                                                   | 132                                              | 2035                                                    |
| 7                   | Baseline Scenario plus<br>Efficiency Gain plus Higher<br>Border Crossing Growth<br>Scenario             | 1,640                                                     | 1,520                                                   | 120                                              | 2035                                                    |
| 8                   | Baseline Scenario plus<br>Efficiency Gain plus Increased<br>Developable Space                           | 1,640                                                     | 1,563                                                   | 77                                               | 2037                                                    |

# Table ES.2SCAG Region-Level Warehousing Space Forecasting Model Key Results,2040*Millions of Square Feet*

Source: SCAG Warehousing Space Forecasting Model, Draft Version 1.0, June 30, 2016.

<sup>a</sup> Indicates in this scenario that the region does not run out of warehousing space in the timeframe considered.

|                 |                                                                                         | 2014<br>Occupied   | 204   | 10 Uncon: | strained ( | Occupied ' | Warehous | se Space | by Altern | ate Scena | ario  |
|-----------------|-----------------------------------------------------------------------------------------|--------------------|-------|-----------|------------|------------|----------|----------|-----------|-----------|-------|
| Cargo<br>Market | Cargo Submarket                                                                         | Warehouse<br>Space | Alt O | Alt 1     | Alt 2      | Alt 3      | Alt 4    | Alt 5    | Alt 6     | Alt 7     | Alt 8 |
| Port Re         | lated                                                                                   | 126.6              | 226.2 | 219.8     | 212.9      | 197.0      | 211.6    | 231.8    | 219.0     | 226.2     | 226.2 |
| 1               | Ports Import Loads to Crossdock<br>Transload Facilities                                 | 4.0                | 8.2   | 8.1       | 8.2        | 11.9       | 8.2      | 8.3      | 8.2       | 8.2       | 8.2   |
| 2               | Ports Import Loads to Small RDCs<br>(<500,000 SF)                                       | 16.2               | 25.5  | 24.7      | 25.5       | 25.5       | 25.5     | 25.8     | 25.3      | 25.5      | 25.5  |
| 3               | Ports Import Loads to Mega RDCs<br>(>=500,000 SF)                                       | 11.7               | 17.0  | 16.6      | 22.3       | 17.0       | 21.0     | 17.1     | 16.8      | 17.0      | 17.0  |
| 4               | Ports Import Loads to Import<br>Warehouses                                              | 81.8               | 161.6 | 157.3     | 142.9      | 128.7      | 142.9    | 164.3    | 157.8     | 161.6     | 161.6 |
| 5               | Ports Export Loads to Export<br>Warehouses                                              | 12.8               | 13.9  | 13.2      | 13.9       | 13.9       | 13.9     | 16.2     | 10.9      | 13.9      | 13.9  |
| Border-         | Crossing Related                                                                        | 14.4               | 31.2  | 31.1      | 30.9       | 31.2       | 30.9     | 25.2     | 38.2      | 31.2      | 31.2  |
| 6               | Border-Crossing Import Loads to<br>Crossdock Transload Facilities in<br>Imperial County | 0.1                | 0.3   | 0.3       | 0.3        | 0.3        | 0.3      | 0.2      | 0.4       | 0.3       | 0.3   |
| 7               | Border-Crossing Import Loads to Small<br>RDCs (<500,000 SF)                             | 0.8                | 1.3   | 1.3       | 1.3        | 1.3        | 1.3      | 1.1      | 1.5       | 1.3       | 1.3   |
| 8               | Border-Crossing Import Loads to Mega<br>RDCs (>=500,000 SF)                             | 0.5                | 0.9   | 0.9       | 1.0        | 0.9        | 1.0      | 0.7      | 1.0       | 0.9       | 0.9   |
| 9               | Border-Crossing Import Loads to Import<br>Warehouses (Excl. Exports via Ports)          | 6.5                | 14.7  | 14.7      | 14.3       | 14.7       | 14.3     | 11.9     | 18.0      | 14.7      | 14.7  |
| 10              | Border-Crossing Export Loads to Export<br>Warehouses (Excl. Imports via Ports)          | 6.5                | 14.0  | 14.0      | 14.0       | 14.0       | 14.0     | 11.1     | 17.3      | 14.0      | 14.0  |

# Table ES.3 Unconstrained Occupied Warehouse Space by Cargo Submarket, 2014 and 2040 by Alternate Scenario Millions of Square Feet

|                 |                                                 | 2014<br>Occupied   | 20          | 40 Uncor    | nstrained   | Occupied    | Warehou     | ise Space   | by Alterr   | nate Scen   | ario        |
|-----------------|-------------------------------------------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Cargo<br>Market | Cargo Submarket                                 | Warehouse<br>Space | Alt O       | Alt 1       | Alt 2       | Alt 3       | Alt 4       | Alt 5       | Alt 6       | Alt 7       | Alt 8       |
| Domes           | stic                                            | 993.5              | 1,382.<br>6 | 1,295.<br>6 | 1,259.<br>2 | 1,382.<br>6 | 1,248.<br>8 | 1,382.<br>9 | 1,382.<br>6 | 1,382.<br>6 | 1,382.<br>6 |
| 11              | Domestic Loads to Small RDCs<br>(<500,000 SF)   | 129.5              | 184.0       | 171.8       | 184.0       | 184.0       | 184.0       | 184.0       | 184.0       | 184.0       | 184.0       |
| 12              | Domestic Loads to Mega RDCs (>=<br>500,000 SF)  | 93.2               | 124.4       | 119.9       | 178.5       | 124.4       | 168.2       | 124.4       | 124.4       | 124.4       | 124.4       |
| 13              | Domestic Loads to General Purpose<br>Warehouses | 770.8              | 1,074.1     | 1,003.<br>9 | 896.6       | 1,074.1     | 896.6       | 1,074.5     | 1,074.1     | 1,074.1     | 1,074.1     |
| Total           |                                                 | 1,134.4            | 1,640.<br>0 | 1,546.<br>6 | 1,502.<br>9 | 1,610.<br>8 | 1,491.3     | 1,639.<br>8 | 1,639.<br>8 | 1,640.<br>0 | 1,640.<br>0 |

Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Note: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

| Submarke  |                                 | 2014<br>Occupied |         |         |         |         |         |         |         |         |         |  |
|-----------|---------------------------------|------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|
| t Area ID | Submarket Area                  | e Space          | Alt O   | Alt 1   | Alt 2   | Alt 3   | Alt 4   | Alt 5   | Alt 6   | Alt 7   | Alt 8   |  |
| 1         | Long Beach Area Ind             | 15,431           | 22,845  | 22,845  | 25,566  | 22,845  | 22,845  | 22,845  | 22,845  | 22,845  | 22,845  |  |
| 2         | Carson/Rancho Domingz Ind       | 58,063           | 67,715  | 67,723  | 78,109  | 67,773  | 67,758  | 67,773  | 67,623  | 67,879  | 67,723  |  |
| 3         | Lynwood/Paramount Ind           | 8,213            | 8,228   | 8,228   | 9,320   | 8,228   | 8,228   | 8,228   | 8,228   | 8,229   | 8,228   |  |
| 4         | Mid-Counties-LA Ind             | 58,491           | 62,376  | 62,376  | 71,320  | 62,376  | 62,376  | 62,377  | 62,376  | 62,379  | 62,376  |  |
| 5         | Vernon Area Ind                 | 47,418           | 59,179  | 59,189  | 58,570  | 59,203  | 59,208  | 59,203  | 59,156  | 59,245  | 59,189  |  |
| 6         | Commerce Area Ind               | 52,349           | 54,952  | 54,952  | 63,199  | 54,952  | 54,953  | 54,952  | 54,949  | 54,957  | 54,952  |  |
| 7         | Southwest SGV Ind               | 6,339            | 6,341   | 6,341   | 7,445   | 6,341   | 6,341   | 6,341   | 6,341   | 6,342   | 6,341   |  |
| 8         | Lower SGV Ind                   | 63,737           | 88,921  | 88,921  | 97,593  | 88,921  | 88,921  | 88,921  | 88,921  | 88,924  | 88,921  |  |
| 9         | Eastern SGV Ind                 | 18,764           | 18,919  | 18,919  | 21,428  | 18,919  | 18,919  | 18,919  | 18,919  | 18,920  | 18,919  |  |
| 10        | West San Bernardino County Ind  | 41,460           | 43,857  | 43,857  | 46,666  | 43,857  | 43,857  | 43,857  | 43,857  | 43,859  | 43,857  |  |
| 11        | Ontario Airport Area Ind        | 159,545          | 257,776 | 257,816 | 268,872 | 257,992 | 257,816 | 257,979 | 257,715 | 257,693 | 257,816 |  |
| 12        | East San Bernardino County Ind  | 69,335           | 72,127  | 72,127  | 74,732  | 72,127  | 72,127  | 72,127  | 72,127  | 72,128  | 72,901  |  |
| 13        | Gardena/110 Corridor Ind        | 20,659           | 24,580  | 24,591  | 25,180  | 24,590  | 24,599  | 24,590  | 24,573  | 24,611  | 24,591  |  |
| 14        | Central LA Ind                  | 54,367           | 68,519  | 68,552  | 65,525  | 68,551  | 68,618  | 68,551  | 68,479  | 68,637  | 68,552  |  |
| 15        | El Segundo/Hawthorne Ind        | 9,895            | 11,067  | 11,155  | 12,280  | 11,152  | 11,357  | 11,152  | 10,959  | 11,373  | 11,155  |  |
| 16        | North Orange County Ind         | 63,803           | 69,181  | 69,181  | 71,410  | 69,181  | 69,181  | 69,181  | 69,181  | 69,185  | 69,181  |  |
| 17        | West Orange County Ind          | 20,847           | 21,250  | 21,250  | 23,443  | 21,250  | 21,250  | 21,250  | 21,250  | 21,251  | 21,250  |  |
| 18        | Riverside Ind                   | 72,430           | 121,786 | 121,767 | 124,535 | 121,850 | 121,767 | 121,880 | 121,711 | 121,685 | 170,728 |  |
| 19        | North San Bernardino County Ind | 11,208           | 38,143  | 38,065  | 28,187  | 38,120  | 38,065  | 38,113  | 38,053  | 38,078  | 38,029  |  |
| 20        | Westside Ind                    | 8,335            | 8,461   | 8,461   | 9,952   | 8,461   | 8,461   | 8,461   | 8,461   | 8,461   | 8,461   |  |
| 21        | SFV East Ind                    | 54,897           | 56,310  | 56,314  | 65,184  | 55,665  | 56,314  | 55,665  | 56,311  | 56,320  | 56,314  |  |
| 22        | East LA Cnty Outlying Ind       | 17               | 22      | 22      | 22      | 22      | 22      | 22      | 22      | 22      | 22      |  |
| 23        | Ventura County Ind              | 25,676           | 31,285  | 31,589  | 29,991  | 31,561  | 31,595  | 27,029  | 31,381  | 31,847  | 31,590  |  |
| 24        | Coachella Valley Ind            | 6,742            | 31,512  | 31,464  | 7,601   | 31,557  | 31,464  | 31,506  | 31,457  | 31,474  | 31,464  |  |
|           |                                 |                  |         |         |         |         |         |         |         |         |         |  |

# Table ES.4 Constrained Occupied Warehousing Space by Submarket Area, 2014 and 2040 by Alternate Scenario Millions of Square Feet

| Southern California Association of Governments Industrial Warehousing Study |
|-----------------------------------------------------------------------------|

|                       |                                    | 2014<br>Occupied    |           |           |           |           |           |           |           | Number    | umber    |  |
|-----------------------|------------------------------------|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|--|
| Submarke<br>t Area ID | Submarket Area                     | Warehous<br>e Space | Alt O     | Alt 1     | Alt 2     | Alt 3     | Alt 4     | Alt 5     | Alt 6     | Alt 7     | Alt 8    |  |
| 25                    | Corona Ind                         | 15,899              | 16,732    | 16,732    | 17,235    | 15,994    | 16,732    | 15,994    | 16,732    | 16,733    | 16,732   |  |
| 26                    | Northwest SGV Ind                  | 11,367              | 11,523    | 11,523    | 13,148    | 11,523    | 11,523    | 11,523    | 11,523    | 11,523    | 11,523   |  |
| 27                    | Orange County Outlying Ind         | 240                 | 240       | 240       | 240       | 240       | 240       | 240       | 240       | 240       | 240      |  |
| 28                    | John Wayne Airport Area Ind        | 35,994              | 36,518    | 36,518    | 42,846    | 36,518    | 36,518    | 36,518    | 36,518    | 36,519    | 36,518   |  |
| 29                    | Santa Clarita Valley Ind           | 11,537              | 11,721    | 11,721    | 12,842    | 11,721    | 11,721    | 11,721    | 11,721    | 11,721    | 11,721   |  |
| 30                    | SFV West Ind                       | 20,516              | 24,480    | 24,480    | 24,273    | 22,781    | 24,480    | 20,593    | 24,480    | 24,481    | 24,480   |  |
| 31                    | South Orange County Ind            | 14,323              | 18,266    | 18,372    | 14,917    | 14,743    | 18,375    | 14,743    | 18,283    | 18,483    | 18,372   |  |
| 32                    | South Riverside County Ind         | 22,015              | 34,129    | 34,078    | 23,762    | 34,078    | 34,078    | 29,183    | 34,072    | 34,085    | 34,078   |  |
| 33                    | Upper SGV Ind                      | 15,988              | 16,078    | 16,078    | 18,255    | 16,078    | 16,078    | 16,078    | 16,078    | 16,078    | 16,078   |  |
| 34                    | Torrance/Beach Cities Ind          | 22,402              | 24,225    | 24,260    | 25,410    | 22,780    | 24,260    | 22,780    | 24,230    | 24,297    | 24,260   |  |
| 35                    | San Bernardino County Outlying Ind | 106                 | 115       | 115       | 127       | 115       | 115       | 115       | 115       | 115       | 115      |  |
| 36                    | Riverside County Outlying Ind      | 112                 | 112       | 112       | 119       | 112       | 112       | 112       | 112       | 112       | 112      |  |
| 37                    | Conejo Valley Ind                  | 9,209               | 11,737    | 11,737    | 10,722    | 9,579     | 11,737    | 9,579     | 11,737    | 11,738    | 11,737   |  |
| 38                    | NE LA Cnty Outlying Ind            | 0                   | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0        |  |
| 39                    | Antelope Valley Ind                | 5,166               | 46,970    | 46,942    | 47,081    | 46,841    | 46,942    | 46,839    | 46,894    | 46,994    | 46,834   |  |
| 40                    | NW LA Cnty Outlying Ind            | 0                   | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0        |  |
| 41                    | Ventura Cnty Outlying Ind          | 0                   | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0        |  |
| 42                    | Imperial County Ind                | 1,540               | 15,889    | 15,095    | 9,450     | 14,326    | 14,754    | 14,323    | 10,331    | 20,091    | 15,079   |  |
| 43                    | Catalina Island Ind                | 2                   | 2         | 2         | 3         | 2         | 2         | 2         | 2         | 2         | 2        |  |
| Total                 |                                    | 1,134,435           | 1,514,091 | 1,513,711 | 1,546,557 | 1,502,926 | 1,513,710 | 1,491,266 | 1,507,963 | 1,519,559 | 1,563,28 |  |

Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Note: The Alternate Scenario are as follows: Alt O: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

#### Travel and Air Quality Impacts Assessment Results of the Model

Table ES.5 and Table ES.6 show the model results for region-level truck trips generated by warehouses and the associated vehicle miles traveled (VMT) under constrained supply conditions in 2014 and 2040 scenarios by cargo market type, which are used to compare travel impacts across the scenarios.

Figure ES.2 and Figure ES.3 show the model results for region-level cargo market type distributions for truck trips generated by warehouses and the associated VMT under constrained supply conditions in 2014 and 2040 baseline scenario, which are used to compare cargo market type shares of the total trips with cargo market type shares of the total truck miles traveled in 2014 and 2040.

Table ES.7 shows the model results for region-level emissions due to truck trips generated by warehouses under constrained supply conditions in 2014 and 2040 scenarios by air pollutant type, which is used to compare air quality impacts across the scenarios.

# Table ES.5Constrained Occupied Warehousing Space-Related Daily Truck Trips Generated by Cargo Market Type,2014 and 2040 by Alternate ScenarioThousands

|                            | 2014 Occupied<br>Warehouse<br>Space-Related |       | 2040 Occupied Warehouse Space-Related Truck Trips by Cargo Market Type<br>by Alternate Scenario Number |       |       |       |       |       |       |       |
|----------------------------|---------------------------------------------|-------|--------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Cargo Market Type          | Truck Trips by<br>Cargo Market<br>ype       | Alt O | Alt 1                                                                                                  | Alt 2 | Alt 3 | Alt 4 | Alt 5 | Alt 6 | Alt 7 | Alt 8 |
| Port Related               | 121                                         | 232   | 220                                                                                                    | 214   | 203   | 188   | 202   | 225   | 213   | 220   |
| Border-Crossing<br>Related | 15                                          | 33    | 32                                                                                                     | 32    | 32    | 32    | 32    | 26    | 40    | 32    |
| Domestic                   | 948                                         | 1,171 | 1,195                                                                                                  | 1,236 | 1,161 | 1,224 | 1,155 | 1,190 | 1,200 | 1,243 |
| Total                      | 1,084                                       | 1,436 | 1,447                                                                                                  | 1,481 | 1,395 | 1,444 | 1,389 | 1,441 | 1,452 | 1,495 |

Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Note: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

ES-13

#### Table ES.6 Constrained Occupied Warehousing Space-Related Daily Truck VMT for Truck Trips Generated by Cargo Market Type, 2014 and 2040 by Alternate Scenario *Thousands*

|                            | 2014 Occupied<br>Warehouse<br>Space-Related | 2040 0 | 2040 Occupied Warehouse Space-Related Truck VMT by Cargo Market Type by Alternate Scenario<br>Number |        |        |        |        |        |        |        |
|----------------------------|---------------------------------------------|--------|------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|
| Cargo Market Type          | Truck VMT by<br>Cargo Market<br>Type        | Alt O  | Alt 1                                                                                                | Alt 2  | Alt 3  | Alt 4  | Alt 5  | Alt 6  | Alt 7  | Alt 8  |
| Port Related               | 3,698                                       | 7,204  | 6,695                                                                                                | 6,129  | 6,168  | 5,580  | 6,124  | 7,017  | 6,343  | 6,582  |
| Border-Crossing<br>Related | 1,610                                       | 2,343  | 2,399                                                                                                | 2,918  | 2,421  | 2,436  | 2,418  | 2,116  | 2,790  | 2,397  |
| Domestic                   | 47,396                                      | 58,567 | 59,753                                                                                               | 61,776 | 58,031 | 61,177 | 57,742 | 59,479 | 59,981 | 62,163 |
| Total                      | 52,705                                      | 68,114 | 68,847                                                                                               | 70,822 | 66,619 | 69,193 | 66,283 | 68,612 | 69,115 | 71,142 |

Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Note: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

#### Figure ES.2 Regional Occupied Warehousing Space-Related Daily Truck Trips Distribution by Cargo Market Type under Baseline Scenario, 2014 and 2040 Constrained



Source: SCAG Warehousing Space Forecasting Model, Draft Version 1.0, June 30, 2016.

#### Figure ES.3 Regional Occupied Warehousing Space-Related Daily Truck VMT Distribution by Cargo Market Type under Baseline Scenario, 2014 and 2040 Constrained



Source: SCAG Warehousing Space Forecasting Model, Draft Version 1.0, June 30, 2016.

| Scenario |                    | 2014      |            | 2040 Emissions |        |        |            |        |        |        |        |
|----------|--------------------|-----------|------------|----------------|--------|--------|------------|--------|--------|--------|--------|
| Number   | Air Pollutant Type | Emissions | Alt O      | Alt 1          | Alt 2  | Alt 3  | Alt 4      | Alt 5  | Alt 6  | Alt 7  | Alt 8  |
| 1        | ROG                | 9.2       | 2.6        | 2.6            | 2.7    | 2.5    | 2.6        | 2.5    | 2.6    | 2.6    | 2.7    |
| 2        | TOG                | 11.4      | 4.0        | 4.0            | 4.2    | 3.9    | 4.1        | 3.9    | 4.0    | 4.1    | 4.2    |
| 3        | CO                 | 75        | 25         | 25             | 26     | 25     | 26         | 25     | 25     | 26     | 26     |
| 4        | NO <sub>x</sub>    | 278       | 35         | 35             | 36     | 34     | 35         | 34     | 35     | 35     | 36     |
| 5        | CO2                | 71,367    | 90,60<br>9 | 91,585         | 94,212 | 88,621 | 92,04<br>4 | 88,174 | 91,271 | 91,940 | 94,637 |
| 6        | PM10               | 4.08      | 0.34       | 0.35           | 0.36   | 0.33   | 0.35       | 0.33   | 0.34   | 0.35   | 0.36   |
| 7        | PM <sub>2.5</sub>  | 3.90      | 0.33       | 0.33           | 0.34   | 0.32   | 0.33       | 0.32   | 0.33   | 0.33   | 0.34   |

# Table ES.7Constrained Occupied Warehousing Space-Related Regional Total Emissions Due to Truck Trips in Tons per Dayby Air Pollutant Type, 2014 and 2040 by Alternate ScenarioTons per Day

Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Notes: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

ROG = Reactive Organic Gases; TOG = Total Organic Gases; CO = Carbon monoxide;  $NO_x$  = Oxides of Nitrogen;  $CO_2$  = Carbon-dioxide;  $PM_{10}$  = Particular Matter with a diameter of 10 micrometers or less; and  $PM_{25}$  = Particular Matter with a diameter of 2.5 micrometers or less.

ES-16

#### Findings and Policy and Decision-Making Implications

The model results indicate that demand for warehousing space will likely outpace supply under six out of the nine scenarios (including the baseline scenario) over the planning horizon up to the year 2040, which could have an impact on the SCAG region's ability to facilitate efficient and effective logistics activities. Shortages in supply could start to appear as early as 2029, depending on the scenario. Even under the scenarios without a supply shortfall by 2040, significant private investment into new construction and operational improvements would be needed, and strong support for permitting would be needed from local jurisdictions.

The model results indicated that the biggest gains in warehouse square footage will be derived through replacing obsolete buildings with more efficient facilities and through construction of new warehouses and RDCs on currently undeveloped land. Based on the model results, these are the only two options for appreciably increasing the overall supply of warehousing in the region.

Upgrading warehouse operating efficiencies is important for improving productivity in the goods movement industry, and it will have the effect of reducing unconstrained demand in the region. However, this improvement in efficiencies and productivity will not be enough to avoid shortfalls in supply versus demand.

Some industry trends, alternate freight forecasts, and regional and local policies may serve as demand management strategies, which can further reduce the warehouse space needed in the future.

By 2040, the region overall would have an increase in truck VMT, although air quality impacts would reduce as a result of less polluting truck fleet in the future.

Table ES.8 shows the policy and decision-making implications of the model results to various public and private stakeholders.

| Alternate<br>Number | Alternate<br>Scenario Name                                                             | SCAG Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Local Governments                                                                                                                                                                                                                                                                      | Beneficial Cargo Owners (BCO)                                                                                        | Real Estate Developers                                                               | Warehouse Operators                                                                                          |
|---------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 0                   | Baseline Scenario                                                                      | • A shortfall of 295 million SF of warehouse space is expected by 2040 under warehouse space forecasting model assumptions. This is the worst case scenario.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                                    | N/A                                                                                                                  | N/A                                                                                  | N/A                                                                                                          |
|                     |                                                                                        | <ul> <li>Approximately 33% increase in truck trips and 29%<br/>increase in truck VMT over 2014 level under<br/>warehouse space forecasting model assumptions,<br/>however, substantial drop in truck emissions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                        |                                                                                                                      |                                                                                      |                                                                                                              |
| 1                   | Baseline Scenario plus<br>Efficiency Gain                                              | <ul> <li>Efficiency improvements for new developments<br/>would increase regional economic competitiveness<br/>(see efficiency gains in Table 1.3).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>In areas where new buildings are constructed, greater<br/>efficiencies imply more cargo handled per square foot<br/>of space consumed.</li> </ul>                                                                                                                             | <ul> <li>BCOs would benefit from greater<br/>productivity in the new buildings<br/>meeting their physical</li> </ul> | opportunities for developers to<br>construct new buildings with                      | <ul> <li>Warehouse operators would<br/>attract more customers to new<br/>developments with modern</li> </ul> |
|                     |                                                                                        | <ul> <li>A shortfall of 126 million square feet of warehouse<br/>space is expected by 2040 under warehouse space<br/>forecasting model assumptions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                        | configuration and operational<br>characteristics requirements,<br>and resulting in better customer<br>service.       | modern design features and<br>services in submarket areas with<br>developable space. | building features and services.                                                                              |
|                     |                                                                                        | <ul> <li>Approximately 34% increase in truck trips and 31%<br/>increase in truck VMT over 2014 level, however,<br/>substantial drop in truck emissions under warehouse<br/>space forecasting model assumptions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                        |                                                                                                                      |                                                                                      |                                                                                                              |
| 2                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Replacement of Obsolete<br>Buildings | <ul> <li>Includes implications in Scenario 1 in terms of regional economic competitiveness</li> <li>Efficiency improvements for replaced obsolete facilities would increase regional economic competitiveness (see efficiency gains in Table 1.3).</li> <li>The existing supply is expected to fully meet the regional demand for warehouse space up to 2040 under warehouse space forecasting model assumptions. This is one of the possible best case scenarios.</li> <li>Approximately 37% increase in truck trips and 34% increase in truck VMT over 2014 level, however, substantial drop in truck emissions under warehouse space forecasting model assumptions.</li> </ul> | <ul> <li>Includes implications in Scenario 1.</li> <li>Local governments would see more renovation-related construction in areas where there are obsolete buildings.</li> <li>Local governments decide to preserve the existing land use designation for warehouse parcels.</li> </ul> | • Same implications as in Scenario 1.                                                                                | • Same implications as in Scenario 1.                                                | • Same implications as in Scenario 1.                                                                        |

#### Table ES.8 Policy and Decision-Making Implications to Stakeholders under Alternate Scenarios

Southern California Association of Governments Industrial Warehousing Study

| Alternate<br>Number | Alternate<br>Scenario Name                                                     | SCAG Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Local Governments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Beneficial Cargo Owners (BCO)                                                                                                                                                                     | Real E                                                   |
|---------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Ef<br>In            | Baseline Scenario plus<br>Ifficiency Gain plus<br>Increased Mega RDCs<br>Share | <ul> <li>Includes implications in Scenario 1 in terms of regional economic competitiveness.</li> <li>Mega RDCs would help BCOs achieve economies of scale, thus, would improve regional economic competitiveness (see Sections 1.1 and 1.3 and Task 3 Report).</li> <li>The existing supply is expected to fully meet the regional demand for warehouse space up to 2040 under warehouse space forecasting model assumptions. This is one of the possible best case scenarios.</li> <li>Approximately 29% increase in truck trips and 26% increase in truck VMT over 2014 level, however, substantial drop in truck emissions under warehouse space forecasting model assumptions.</li> </ul> | <ul> <li>Includes implications in Scenario 1.</li> <li>This would create economic development<br/>opportunities, but also concentrated local traffic<br/>impacts in municipalities in Inland Empire and<br/>northern reaches of Los Angeles County the most, as<br/>there are large amounts of developable space and<br/>contains large-sized parcels to accommodate<br/>building sizes of 500,000 square feet or more.</li> <li>However, a few mega RDC developments also may<br/>occur in other submarket areas where there is<br/>developable space, compatible land uses, and local<br/>support.</li> <li>Local governments develop policy and ordinances to<br/>support development of mega RDCs.</li> </ul> | <ul> <li>Includes implications in<br/>Scenario 1.</li> <li>Large BCOs would benefit from<br/>greater supply chain productivity<br/>with the use of larger, more<br/>modern facilities.</li> </ul> | Developer<br>would see<br>submarke<br>developab<br>RDCs. |

Southern California Association of Governments Industrial Warehousing Study

#### l Estate Developers

pers of large facilities see more opportunities in rket areas with pable space for mega

#### Warehouse Operators

• Operators of large facilities would see more opportunities in submarket areas with new mega RDC developments.

| Alternate<br>Number | Alternate<br>Scenario Name                                                                              | SCAG Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Local Governments                                                                                                                                                                                                                                                                                                                    | Beneficial Cargo Owners (BCO)                                                                                                                                                                                                                                                                                                                                      | Real Esta                                                                           |
|---------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 4                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Increased Crossdock<br>Transloading Share             | <ul> <li>Includes implications in Scenario 1 in terms of regional economic competitiveness.</li> <li>Crossdock transloading facilities would support a growing segment of port-related transloading customers. Through a high cargo turnover rate, they would also reduce demand for port-related warehouse space (see Sections 1.1 and 1.3 and Task 3 Report).</li> <li>A shortfall of 97 million square feet of warehouse space forecasting model assumptions.</li> <li>Approximately 33% increase in truck trips and 31% increase in truck VMT over 2014 level, however, substantial drop in truck emissions under warehouse space forecasting model assumptions.</li> </ul>                                                     | <ul> <li>Includes implications in Scenario 1.</li> <li>Local jurisdictions near the ports would see an increase in demand for crossdock transloading, and associated truck traffic.</li> <li>Local jurisdictions near the ports decide to preserve the existing land use designation for crossdock transloading purposes.</li> </ul> | <ul> <li>Includes implications in<br/>Scenario 1.</li> <li>This scenario is primarily BCO<br/>driven as part of BCO's overall<br/>supply chain strategy. If more<br/>crossdock transloading is<br/>accommodated, it could make<br/>Southern California more<br/>attractive to BCOs using<br/>crossdock transloading as their<br/>supply chain strategy.</li> </ul> | <ul> <li>Developers v<br/>increased op<br/>crossdock tra<br/>submarket a</li> </ul> |
| 5                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Increased E-commerce and<br>Fulfillment Centers Share | <ul> <li>Includes implications in Scenario 1 in terms of regional economic competitiveness.</li> <li>Fulfillment centers would support a growing segment of e-commerce customers who require same day or two-day delivery (see Sections 1.1, 1.3 and Task 3 Report).</li> <li>The existing supply is expected to fully meet the regional demand for warehouse space up to 2040 under warehouse space forecasting model assumptions. This is one of the possible best case scenarios.</li> <li>Approximately 28% increase in truck trips and 26% increase in truck VMT over 2014 level, however, substantial drop in truck emissions under warehouse space forecasting model assumptions. This is the best case scenario.</li> </ul> | <ul> <li>Includes implications in Scenarios 1 and 3.</li> <li>In fulfillment centers that are highly specialized or automated, skilled workforce opportunities may benefit local jurisdictions.</li> </ul>                                                                                                                           | <ul> <li>Includes implications in<br/>Scenarios 1 and 3</li> <li>By providing same day or two-<br/>day delivery service, BCOs<br/>would become more attractive to<br/>e-commerce customers.</li> </ul>                                                                                                                                                             | • Includes imp<br>Scenarios 1 a                                                     |

#### Table ES.8 Policy and Decision-Making Implications to Stakeholders under Alternate Scenarios (continued)

Southern California Association of Governments Industrial Warehousing Study

#### state Developers

ers would have opportunities for k transload facilities in t areas near the ports.

#### Warehouse Operators

• Crossdock transload-related third-party logistics (3PL) operators would likely see more business in submarket areas near the ports.

mplications in s1and3

- Includes implications in Scenario 1.
- Operators of large facilities, but workforce specialized in fulfillment center operations would see more opportunities in submarket areas with new mega RDC developments.

| Alternate<br>Number | Alternate<br>Scenario Name                                                                 | SCAG Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Local Governments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Beneficial Cargo Owners (BCO)                                                                                                                                                                                                                                               | Real Esta                                                                                                                       |
|---------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 6                   | Baseline Scenario plus<br>Efficiency Gain plus Lower<br>Border Crossing Growth<br>Scenario | <ul> <li>Includes implications in Scenario 1 in terms of regional economic competitiveness.</li> <li>This scenario reflects SCAG's alternate freight forecast for border-crossing cargo, which is lower than the baseline scenario. This would reduce demand for border-crossing-related warehouse space, but increase demand for port-related warehouse space (see Section 1.3 and SCAG Goods Movement Border Crossing Study and Analysis – Phase II Report).</li> <li>A shortfall of 132 million square feet of warehouse space is expected by 2040 under warehouse space forecasting model assumptions.</li> <li>Approximately 33% increase in truck trips and 30% increase in truck VMT over 2014 level, however, substantial drop in truck emissions under warehouse space forecasting model assumptions.</li> </ul> | <ul> <li>Includes implications in Scenario 1.</li> <li>Cities in Imperial County would see less economic development opportunities than the baseline scenario.</li> <li>Communities closer to the ports could see rise in traffic levels in the short term, but on the long term, the impacts would be similar to the baseline scenario. Communities along the Mexico-U.S. border would see an increase in traffic levels lower than the baseline scenario both in the short and long term.</li> </ul> | <ul> <li>Includes implications in<br/>Scenario 1.</li> <li>BCOs would have reduced<br/>benefits of the North American<br/>Free Trade Agreement (NAFTA)<br/>trade benefits, as the overall<br/>transportation cost will be higher<br/>than the baseline scenario.</li> </ul> | <ul> <li>Includes imp<br/>Scenario 1.</li> <li>Developers n<br/>increase in do<br/>warehousing<br/>to attract carged</li> </ul> |

Southern California Association of Governments Industrial Warehousing Study

| Estate Developers                                                                             | Warehouse Operators                                                                                                                                                                                                |  |  |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| s implications in •<br>o 1.                                                                   | <ul> <li>Includes implications in<br/>Scenario 1.</li> </ul>                                                                                                                                                       |  |  |  |  |
| ers might see a slower<br>e in demand for<br>using in Imperial County<br>t cargo from Mexico. | <ul> <li>Although port-related<br/>warehouse operations near</li> <li>San Pedro Bay Ports would see<br/>a rise, the decline in demand for<br/>border-crossing-related<br/>warehouse operations would be</li> </ul> |  |  |  |  |

replaced by domestic warehouse operations.

| Alternate<br>Number | Alternate<br>Scenario Name                                                                  | SCAG Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Local Governments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Beneficial Cargo Owners (BCO)                                                                                                                                                                                                                                            | Real Estate Developers                                                                                                                                                             | Warehouse Operators                                                                                                                                                                                                                                    |
|---------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7                   | Baseline Scenario plus<br>Efficiency Gain plus Higher<br>Border Crossing Growth<br>Scenario | <ul> <li>Includes implications in Scenario 1 in terms of regional economic competitiveness.</li> <li>This scenario reflects SCAG's alternate freight forecast for border-crossing cargo, which is higher than the baseline scenario. This would increase demand for border-crossing-related warehouse space, but reduce demand for port-related warehouse space (see Section 1.3 and SCAG Goods Movement Border Crossing Study and Analysis – Phase II Report).</li> <li>A shortfall of 120 million square feet of warehouse space is expected by 2040 under warehouse space forecasting model assumptions.</li> <li>Approximately 34% increase in truck trips and 31% increase in truck VMT over 2014 level, however, substantial drop in truck emissions under warehouse space forecasting model assumptions.</li> </ul> | <ul> <li>Includes implications in Scenario 1.</li> <li>Cities in Imperial County would see more economic development opportunities than the baseline scenario.</li> <li>Communities closer to the ports could see lower traffic levels in the short term, but on the long term, the impacts would be similar to the baseline scenario. Communities along the Mexico-U.S. border would see an increase in traffic levels higher than the baseline scenario both in the short and long term.</li> </ul>                         | <ul> <li>Includes implications in Scenario 1</li> <li>BCOs would have increased benefits of NAFTA trade benefits as supply chain benefits (such as ease of quality control and lower overall transportation cost), will be higher than the baseline scenario.</li> </ul> | <ul> <li>Includes implications in Scenario 1</li> <li>Developers might see a faster increase in demand for warehousing in Imperial County to attract cargo from Mexico.</li> </ul> | <ul> <li>Includes implications in Scenario 1</li> <li>Although port-related warehouse operations near San Pedro Bay Ports would see a decline, the demand would be replaced with border crossing-related and domestic warehouse operations.</li> </ul> |
| 8                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Increased Developable<br>Space            | <ul> <li>Includes implications in Scenario 1 in terms of regional economic competitiveness.</li> <li>This scenario reflects some of the local governments' recent approval of development proposals and tentative land use conversions. This would delay the projected year when the region would start experiencing a warehouse supply shortfall.</li> <li>A shortfall of 77 million square feet of warehouse space is expected by 2040 under warehouse space forecasting model assumptions.</li> <li>Approximately 38% increase in truck trips and 35% increase in truck VMT over 2014 level, however, substantial drop in truck emissions under warehouse space forecasting model assumptions. This is the worst case scenario.</li> </ul>                                                                              | <ul> <li>Includes implications in Scenario 1.</li> <li>The additional land for warehousing is assumed to be available in eastern part of Inland Empire. Travel impacts would increase due to added traffic from facilities that are anticipated to be built in this scenario.</li> <li>This scenario may impose a number of policy considerations to local governments as it assumes land use type conversions, potential traffic increase, and transportation facility adequacy to handle increased traffic, etc.</li> </ul> | <ul> <li>Includes implications in<br/>Scenario 1.</li> <li>BCOs will have more choices<br/>and more warehouse capacity to<br/>work with.</li> </ul>                                                                                                                      | <ul> <li>Includes implications in<br/>Scenario 1.</li> <li>Real estate developers will<br/>benefit because of greater<br/>development opportunities.</li> </ul>                    | <ul> <li>Includes implications in<br/>Scenario 1.</li> <li>Warehouse operators will<br/>benefit because of greater<br/>growth opportunities.</li> </ul>                                                                                                |

#### Table ES.8 Policy and Decision-Making Implications to Stakeholders under Alternate Scenarios (continued)

Source: Cambridge Systematics, Inc.

Southern California Association of Governments Industrial Warehousing Study

# 1.0 Evaluation Framework

This section provides a recap of the identified industry trends and the defined baseline scenario in Tasks 3 and 4 reports of this study, respectively. It then continues to develop an evaluation framework for warehousing-related public scenario planning and policy-making. For this, alternate warehousing scenarios are defined not only based on the industry trends, but also alternate freight forecasts and state and local policies. Lastly, the parameters and calculations that implement these alternate warehousing scenarios are identified in this section.

#### 1.1 A RECAP OF WAREHOUSING-RELATED INDUSTRY TRENDS

In Task 3 report of this study, six historical and five emerging industry trends were discussed; all of which are meant to satisfy customer demand and increase operating efficiency of beneficial cargo owners (BCO). Some of the industry trends were evaluated in this report using warehouse space forecasting model.

The historical trends in Task 3 report included: 1) increasing share of mega regional distribution centers (RDC), 2) increasing share of transloading and crossdock transloading, 3) changes in RDC location strategy, 4) a growing trend in integration of value-added services into warehouse facility operation, 5) use of supply chain integration strategies such as vendor-managed inventory, and 6) growing use of information technology (IT) in cargo-handling facilities. The emerging trends in Task 3 report included: 1) development of multimodal logistics centers, 2) increasing near-shoring and re-shoring, 3) increasing warehouse automation, 4) a growing share of on-line or electronic retail order placement and fulfillment, and 5) growing potential for compressed time of order fulfillment enabled by alternate delivery systems. Some of these trends apply to only particular BCOs, and help them reduce total landed costs and increase market shares. Some of these trends also strongly relate to the needs of third-party logistics (3PL) firms that operate warehouse facilities on behalf of the BCOs, while others, such as changes in RDC location strategy, use of vendor-managed inventory, increasing near-shoring and re-shoring, weakly relate to 3PL needs.

The changes in BCO's business profile, as well as the changes in requirements of the 3PL's BCO customers, influence the location; physical configuration (facility type, layout, size, ceiling height, etc.); and operational characteristics (cargo turnover rate, stacking type, level of IT used in cargo handling and automation, etc.) of future warehouse facilities. Some of the industry trends were evaluated using the warehouse space forecasting model<sup>1</sup> over a planning horizon (up to the year 2040), as discussed in Section 1.3 of this report.

<sup>&</sup>lt;sup>1</sup> This is a warehousing supply and demand model improved as part of the Task 4 report of this study.

Some of the industry trends were not evaluated or modified for evaluation purposes in this study for the following reasons:

1. Some of the industry trends are applicable to particular BCOs and 3PLs serving them. For example, according to a WSJ article<sup>2</sup>:

"The biggest shippers, including Wal-Mart Stores Inc., Home Depot Inc., and Target Corp., have employed for years what is known in the industry as a four-corner strategy, in which networks are expanded to include warehouses at northern and southern ports on both coasts and the Gulf of Mexico. Now even smaller companies are diversifying."

The four-corner strategy and other such RDC location strategies are too firm specific and studying the firms' market shares and location preferences for warehousing within North America is beyond this study. Their impacts on physical configuration and operational characteristics would be difficult to represent in a public and macroscopic warehouse space forecasting model.

However, this is an important industry trend for regional policy-makers to monitor and/or further study because the competition between ports and warehouse markets can have long-term economic effects, such as geographical shift in warehousingrelated employment and change in cost of business, etc.

 Certain industry trends do not result in substantial changes in occupied warehouse space. For example, integration of value-added services would result in a small increase in dwell times of cargo at warehouse facilities with such services, but no noticeable changes in regional-level occupied warehouse space over the planning horizon.

However, this is an important industry trend for regional policy-makers to monitor and/or further study, because such operations can have short-term economic effects, such as workforce training, warehouse facilities reconfiguration/redevelopment, etc.

3. Understanding the implications of compressed time of order fulfillment, such as "Amazon Prime" offering same-day delivery on occupied warehouse space, requires an hourly or daily operational-level analysis of freight movements into/out of warehouses. This is beyond the capability of the warehouse space forecast model, which is an annual supply and demand model.

However, this is an important industry trend for regional policy-makers to monitor and/or further study, because such operations can have short-term economic effects, such as additional traffic conflicts, prolonged hours of service, etc.

4. Lastly, the level of usage of IT in cargo handling and the level of warehouse automation could not be identified in the existing warehouse inventory.

Noting that these industry trends tend to improve operational efficiency of warehouse facilities, a generalized efficiency gain scenario was developed in this study, as discussed later in Section 1.3 of this report.

<sup>&</sup>lt;sup>2</sup> Laura Stevens and Paul Ziobro, Ports Gridlock Reshapes the Supply Chain, Wall Street Journal Article, March 5 2015. Available at: http://www.wsj.com/articles/ports-gridlock-reshapes-the-supply-chain-1425567704 (last accessed on June 30, 2016).

#### 1.2 A RECAP OF BASELINE SCENARIO OF WAREHOUSE SPACE FORECASTING MODEL

In Task 4 report, a spreadsheet-based warehouse space forecasting model was developed to estimate future supply and demand for warehouse space in 43 geographical submarket areas of the Southern California Association of Government (SCAG) region and three cargo markets; namely, "port-related," "border crossing-related" and "domestic." The three cargo markets were further broken down into 13 cargo submarkets to simultaneously also represent the functional use of warehouse building; namely, crossdock transloading, general purpose warehouse, small RDC or mega RDC.

The model consisted of a comprehensive warehouse space inventory for the year 2014 using a detailed warehouse facility location and type data. The inventory provided existing occupied and vacant space at regional and submarket area level by functional use of warehouse building. Based on local land use plan data, a baseline supply of developable space was estimated. Port-related baseline cargo forecasts<sup>3</sup> and border crossing-related baseline cargo forecasts<sup>4</sup> were combined with predictions of overall cargo forecasts<sup>5</sup> to estimate regional-level future unconstrained occupied warehouse space by cargo submarket under the baseline scenario. Under the baseline scenario, the warehouse stops distribution for port-related imported cargo was kept similar to existing conditions. Under the baseline scenario, the share of functional uses of building was kept similar to existing conditions. Future cargo loads were converted to future storage space under the baseline scenario using existing operational efficiency parameters of Avison-Young<sup>6</sup> formula; that is, no efficiency gain over time was assumed. The regional-level demand for warehouse space was allocated to 43 submarket areas, while taking into account the constraints of available vacant and developable space in each submarket area. Developable space over and above the existing developable space, that is new developable space, was added only in Imperial County and that too for border crossing-related freight purposes when the existing developable space runs out. No other new developable space was assumed under the baseline scenario.

In this report, the baseline scenario also is referred to as Alt zero (or Alt O) for convenience.

#### 1.3 WAREHOUSING-RELATED ALTERNATE SCENARIOS

This section defines warehousing-related alternate scenarios that could affect the supply and demand for warehousing space. These scenarios are developed not only based on

<sup>&</sup>lt;sup>3</sup> Based on the most recent and available San Pedro Bay Ports cargo forecasts.

<sup>&</sup>lt;sup>4</sup> Based on SCAG Goods Movement Border Crossings Study and Analysis – Phase II cargo forecasts.

<sup>&</sup>lt;sup>5</sup> Based on a relationship between historical occupied warehouse space in SCAG region and historical U.S. gross domestic product (GDP), applied on U.S. GDP forecasts from REMI PI+ Version 3.6.1 economic model for SCAG.

<sup>&</sup>lt;sup>6</sup> Avison-Young is commercial real-estate services firm. They developed a formula to convert warehoused loads in twenty-foot equivalent units (TEU) to warehouse space in square feet using parameters, including container cargo capacity, container storage efficiency, warehouse cubic space utilization, capacity utilization, cargo turnover rate, and ceiling height of building.

some of the industry trends mentioned in Section 1.1 of this report, but also alternate freight forecasts and vehicle emission regulations by the State of California and local land use policies that were available.

Definitions of the alternate scenarios are provided below.

#### Alternate Scenario 1. Baseline Scenario plus Efficiency Gain (or Alt 1)

Alternate Scenario 1 is designed to test the industry trends of growing use of IT in cargohandling facilities and increasing warehouse automation, which tend to increase operational efficiency of warehouse buildings through reduced manual operations, use of conveyors, sorters, robots, and other automated cargo-handling equipment, narrower spacing between aisles, tall storage racks, and higher stacking capability.

Additional operational efficiency gain also would come from locating new developments (that is, warehouse building developments in planned industrial lands for warehousing) with a higher allowable ceiling height than the average ceiling height for existing warehouse buildings.

For this scenario, it is assumed that the operational efficiency gains would be applicable only to added cargo (that is, forecast minus existing cargo), and existing cargo would continue to be handled at existing operational efficiency. This results in an increase in storage capacity utilization, and a reduction in unconstrained occupied warehouse space for added cargo compared to the baseline scenario.

All other alternate scenarios (Alt 2 to Alt 8) are assumed to include the effects of Alternate Scenario 1; thus, this scenario also can be considered as a modified baseline scenario.

#### Alternate Scenario 2. Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings (or Alt 2)

BCOs and 3PLs want distribution centers (DC) and warehouses that enable them to efficiently execute their supply chain strategies. However, a high percentage of facilities near the San Pedro Bay Ports can be considered functionally obsolete. Many of these older buildings are still in use because BCOs and 3PLs prefer to operate close to the ports, even though the building configuration and operational characteristics may not be optimal.

Alternate Scenario 2 is developed by superimposing the effects of Alternate Scenario 1 with a regional policy to support replacement of older, functionally obsolete warehouse buildings with those that have higher ceilings, modern design, and better interior layouts. The replacement developments result in preservation of warehousing land uses, an increase in storage capacity utilization, and a reduction in unconstrained occupied warehouse space for existing and added cargo compared to the baseline scenario.

Although there is a possibility for rezoning of the land on which warehouse buildings are torn down and used for purposes other than warehousing, this was not evaluated in this study. However, this scenario allows for regional policy-makers to consider what it takes to balance various land use types and interests, and their associated impacts.

#### Alternate Scenario 3. Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share (or Al 3)

Southern California is a large population center and retailers locate RDCs here to replenish inventories in stores that cater to consumers. An increasing number of large retailers is shifting to operating mega RDCs to gain operating efficiencies and economies of scale, and Southern California is a logical place to operate a mega RDC. The rise of e-commerce also is associated with greater use of mega RDCs, since they have high ceilings and more square footage to accommodate large pieces of automated cargo-handling equipment, as well as sizable yards for container and trailer storage. Historical trends in the CoStar® Property database also are evidence to a faster growth in number of mega RDCs, the new developments have mainly been in the Inland Empire and the northern reaches of Los Angeles County as opposed to near-port communities.

Alternate Scenario 3 is designed to test the industry trend of increasing share of mega RDCs, while also considering the effects of efficiency gains to all added cargo assumed in Alternate Scenario 1. Mega RDCs are defined in this study as RDCs with greater than or equal to 500,000 square feet of building area.<sup>7</sup> Under this scenario, mega RDCs form a higher share of total regional unconstrained occupied warehouse space than the baseline scenario, and as a result a higher share of developable space is allocated to new mega RDC developments than the baseline scenario. Much of the developable space in the SCAG region is located in Inland Empire and northern reaches of Los Angeles County, so the historical trend is expected to continue. Due to higher ceilings and better space utilization of mega RDCs over general purpose warehouses, overall square footage demand is likely to decrease.

#### Alternate Scenario 4. Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share (or Alt 4)

The 3PL interviews conducted for this study indicated that an increasing number of their customers are requesting transloading and, in particular, port-related crossdock transloading. These 3PL facilities are running close to capacity and operate 24/7. An increase in port-related cargo forecasts will likely increase this crossdock transload activity and cause 3PLs to seek additional warehouse space in municipalities close to the San Pedro Bay Ports in the near- to mid-term, either by relocating to larger facilities or operating multiple small facilities. Stand-alone crossdock transloading warehouses typically are not large, but nearly always are located in relative proximity to the San Pedro Bay Ports, because the nature of the activity is time-sensitive. Some 3PLs perform crossdock transloading in multipurpose warehouses, which usually are larger than the stand-alone facilities. With a day to two days' time for cargo turnover, there is very limited storage for cargo that is crossdock transloaded.

Increasing share of crossdock transloading has two important policy implications, which are: 1) it encourages further shift from "push" to "pull" logistics, which benefits San Pedro Bay Ports by faster removal of containers and better utilization of container storage area or

<sup>&</sup>lt;sup>7</sup> Mega RDCs also can be defined in the warehouse space forecasting model using higher threshold values of building area, namely, 750,000 square feet or 1,000,000 square feet. The default threshold value of building area is 500,000 square feet; and this was used in the evaluation of all alternate scenarios.

a higher throughput; and 2) it emphasizes the need for near-port municipalities to preserve as much industrial land as possible for this purpose.

Alternate Scenario 4 is used to test increasing share of port-related crossdock transloading in near-port communities from both industry trend and local policy perspectives, while also considering the effects of efficiency gains to all added cargo assumed in Alternate Scenario 1. Due to a much higher cargo turnover rate of crossdock transloading facilities, overall square footage demand is likely to decrease. In the evaluation of this scenario, only existing vacant and developable space in near-port submarket areas was used; however, the near-port municipalities also can consider the possibility of redeveloping obsolete buildings of any existing land use type as crossdock transload facilities, if the size, layout, and existing conditions are suited for this purpose; and nearby land uses are compatible.

#### Alternate Scenario 5. Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share (or Alt 5)

E-commerce is growing as a share of overall retail sales, especially for large retailers. Rather than fulfilling Internet orders in multipurpose RDCs, retail giants, such as Amazon, Walmart, and Home Depot, have begun establishing stand-alone e-commerce and fulfillment centers. These facilities are highly automated in order to handle the multitude of consumer orders having one or only a few items, which is operationally somewhat different from a regular RDC that processes cartons to replenish store inventory.

Alternate Scenario 5 treats e-commerce and fulfillment centers as a type of mega RDCs, because they typically exceed 500,000 square feet of building area, but with a higher cargo turnover rate due to customer demand for quick order fulfillment. This scenario increases the share of e-commerce and fulfillment centers within all mega RDCs, while also considering the effects of efficiency gains to all added cargo assumed in Alternate Scenario 1, and the effects of increased share of mega RDCs assumed in Alternate Scenario 3. This scenario also would result in reduction in overall square footage demand.

#### Alternate Scenario 6. Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario (or Al 6)

and

#### Alternate Scenario 7. Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario (or Alt 7)

In concurrence with this study, SCAG conducted a goods movement study for border crossings along California-Mexico border to develop freight planning strategies that address long-term trade and transportation infrastructure needs. Although the border crossings study does not isolate the effects of the industry trend of near-shoring to Mexico, it provided two distinct scenarios, namely, "high-volume" and "low-volume" scenarios that can affect the amount of overall occupied warehouse space needed in the SCAG region.

Both scenarios are based on the projections of "macro" variables of the U.S. Index of Industrial Production and the U.S. Retail Sales. The "high-volume" scenario is based on optimistic projections of the "macro" variables, and the "low-volume" scenario is based on pessimistic projections of the "macro" variables. In comparison, the "baseline" scenario
(which was used in the baseline scenario in this study) is based on most-likely projections of the "macro" variables.

In addition, an evolution of border-crossing "micro" events were assumed for each scenario to influence the border-crossing cargo forecasts. Table 1.1 shows the distinction of "micro" events between the low-volume and high-volume scenarios. While the policies are similar, the improvements relating to infrastructure, border-crossing operations and regional production capacity are more aggressive in the "high-volume" scenario than in the "low-volume" scenario. The improvements in the "baseline" scenario (which was used in the baseline scenario in this study) lie in between the "high-volume" and "low-volume" scenarios.

## Table 1.1Definitions of Border-Crossing-Related "High-Volume" and<br/>"Low-Volume" Growth Scenarios

| Category                           | "Micro" Events in Scenario                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High Volume Scen                   | ario                                                                                                                                                                                                                                                                                                                                                                                         |
| Infrastructure                     | <ul> <li>Port of Ensenada expands (including El Sauzal)</li> <li>Intermodal facility in Tijuana is built</li> <li>Cold storage facilities are built in Imperial County</li> <li>East-West railroad (Desert Line) begins operations</li> <li>Modernization of railroad short-line between Tijuana and Tecate is completed (including expansion of freight yards in SY and Tijuana)</li> </ul> |
| Border-Crossing<br>Operations      | <ul> <li>Pre-inspection and other technology-based operational improvements<br/>are introduced at local LPOEs</li> </ul>                                                                                                                                                                                                                                                                     |
| Regional<br>Production<br>Capacity | <ul> <li>Furniture companies relocate to Tijuana from China (higher quality)</li> <li>Suppliers of large maquiladoras do not relocate to Tijuana and Mexicali</li> <li>High value-added manufacturing activities in Tijuana and Mexicali increase</li> </ul>                                                                                                                                 |
| -                                  | <ul> <li>BC State policy to retain and expand maquiladoras succeeds</li> <li>BC State policy to promote relocation of supplier companies to maquiladoras fails</li> <li>Mexican policy to promote domestic suppliers fails</li> <li>Maquiladoras go back to IMMEX treatment (are not charged VAT)</li> </ul>                                                                                 |
| Low-Volume Scen                    | ario                                                                                                                                                                                                                                                                                                                                                                                         |
| Infrastructure                     | <ul><li>LPOEs in SLRC expand capacity</li><li>Holtville air cargo project begins operations</li></ul>                                                                                                                                                                                                                                                                                        |
| Regional<br>Production<br>Capacity | <ul> <li>High value-added manufacturing activities in Tijuana and Mexicali do not<br/>increase</li> </ul>                                                                                                                                                                                                                                                                                    |

|   | BC State policy to retain and expand maquiladoras fails<br>BC State policy to promote relocation of supplier companies to<br>maquiladoras succeeds |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------|
| • | Mexican policy to promote domestic suppliers is successful                                                                                         |
| • | Maquiladoras are charged fully for VAT (no reimbursement)                                                                                          |
|   |                                                                                                                                                    |

Source: SCAG Goods Movement Border Crossing Study and Analysis – Phase II, HDR Analysis of Economic Trends Survey and Interviews with Companies.

The border-crossing improvements enable BCOs to adopt the near-shoring strategy in their supply chains; that is, the BCOs are able to move manufacturing activities to Mexico rather than keep them overseas in countries like China. Due to relative levels of border-crossing improvements, the "high-volume" scenario is expected to support more near-shored cargo volumes than the baseline scenario, while the "low-volume" scenario is expected to support less near-shored cargo volumes than the baseline Scenario Study and Analysis – Phase II, the annualized growth rate in border-crossing cargo flows between 2015 and 2040 in the baseline scenario and the high-volume growth scenario have annualized growth rates of 2.1 percent and 3.7 percent, respectively. The origin-destination cargo flow pattern also is different among these scenarios.

Alternate Scenarios 6 and 7 evaluate the effects of the increase and decrease in bordercrossing-related freight flows on demand for warehouse space over the planning horizon, while also considering the effects of efficiency gains to all added cargo assumed in Alternate Scenario 1. These scenarios assume that, as a result of the port-related import volume moving through the San Pedro Bay Ports, would decrease/increase commensurate with the increase/decrease in volume of border-crossing-related cargo moving via truck or rail across the Mexico-California border.

However, near-shoring also may result in some portion of goods produced in Mexico to be transported from Mexico through border crossings in Arizona and Texas destined to markets other than California. The border-crossing cargo forecasts for Tijuana and Mexicali border crossings were assumed to include such effects.

## Alternate Scenario 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space (or Alt 8)

Over time, as urban in-fill development occurs in the core SCAG region and land supply for warehouses and RDCs is depleted, RDC and warehouse construction will be pushed further to the outskirts of the region. In the Inland Empire and in the northern reaches of Los Angeles County, there are large parcels that currently are not zoned for industrial warehousing.

Alternate Scenario 8 tests the impacts of an increase in the supply of warehousing space due to more buildings being approved and permitted, while also considering the effects of efficiency gains to all added cargo assumed in Alternate Scenario 1.

While this is a policy choice for municipalities to consider, this scenario allows for examining potential implications of having increased amount of developable land available to meet

future demand for warehousing as a result of changes in zoning of certain parcels from nonindustrial to industrial use. Some recently industrially zoned land for warehouse projects in cities and, therefore, the submarket areas were added to the available supply.

## 1.4 USING THE WAREHOUSE SPACE FORECASTING MODEL FOR ALTERNATE SCENARIO ANALYSIS

This section describes the identification of assumptions that implement the alternate scenarios in the warehouse space forecasting model. It also describes approximate methodologies used for estimation of travel impacts and air quality impacts related to warehousing.

## Alternate Scenario-Specific Assumptions

The warehousing space forecasting model (as described in Task 4 report of this study) cannot capture the complete real-world complexity of policy-based alternate scenarios. Hence, some simplifying assumptions were made to mathematically define alternate scenarios and quantitatively evaluate them. These include the following:

- Alternate freight forecasts. Alternate freight forecasts were collected for port-related and border-crossing-related cargo markets only, and applied to particular port-related scenario (Alt 4) and border-crossing-related scenarios (Alt 6 and Alt 7). Predicted overall cargo forecast was not changed under any of the alternate scenarios.
- Decisions made by cargo owners and operators of warehouses. Macroscopic variables, representing physical configuration and average operational characteristics of warehouse facilities by cargo submarket, were used for all alternate scenarios. Variations were introduced in the shares of functional use type of warehouse buildings to represent particular alternate scenarios (Alt 3, Alt 4, and Alt 5). Operational efficiency gains were assumed in percentage warehouse building cubic space utilization for storage, percentage storage capacity utilization, and cargo turnover rate under all alternate scenarios.
- **Condition of Buildings.** The year of construction or the year of last renovation, whichever is later, was used to represent the condition of the buildings in all submarket areas. The condition information is used in only one of the alternate scenarios (Alt 2).
- Local Government Land Use Policies and Ordinances. Developable space identified from land use plan data was used for all alternate scenarios. Additional developable space based on newly approved lands by cities for warehousing was considered in one of the alternate scenarios (Alt 8). In addition, average ceiling height for new developments was assumed to be higher than existing warehouse buildings under all alternate scenarios. Similar assumption also was made for replacement developments under Alt 2. On the other hand, floor area ratios by submarket area was not changed under any alternate scenario.
- Access to Transportation and Travel Conditions. Average truck trip generation rates for high-cube warehouse and light warehouse, and average miles traveled per truck based on regional travel demand model runs, conducted as part of the 2013 SCAG

Comprehensive Regional Goods Movement Plan and Implementation Strategy (2013 SCAG CRGMPIS), were used to approximate in the evaluation of travel impacts under all alternate scenarios.

 State and Regional Air Quality Policies. California Air Resources Board's (CARB) 2014 truck-related emission factors for South California Air Basin (SCAB) over the planning horizon were used in the evaluation of air quality impacts under all alternate scenarios.<sup>8</sup>

In addition, a comparison of transportation-related impacts for alternate scenarios was performed. Impacts were measured in terms of warehouse-related truck vehicle miles traveled and criteria pollutant emissions. The methodologies for impacts estimation are approximate and is intended only as an indicator of the relative levels of impacts between alternate scenarios. More data collection and rigorous methods would be required in future studies.

Table 1.2 shows the alternate scenario-specific assumptions, including model inputs (existing and new) that are user controlled and changes to model calculations made with respect to the baseline scenario that are not user controlled.

## Particular Input Values for Testing Alternate Scenarios

For comparing alternate scenarios using warehousing space forecasting model runs, particular values were selected for various user-controlled inputs as follows:

#### Modified Avison-Young (A-Y) Equation-Based Efficiency Parameters

Under the baseline scenario, for 2014 and all forecast years, the efficiency-related parameters were assumed as follows:

- $U_1$ ,  $U_2$  are assumed to be 0.225 (or 22.5 percent) and 0.75 (or 75 percent), respectively.
- *t* is assumed to be 300 for crossdock transload facilities, 36 for general purpose warehouses in Imperial County,<sup>9</sup> 24 for fulfillment center type mega RDCs, and 12 for all other functional use types and locations of warehouse buildings.
- Roughly based on the average height in the 2014 CoStar® Property data inventory, *h* is assumed to vary for different functional use types of warehouse building as follows:
   1) crossdock transload facility 8 feet; 2) general purpose warehouse 22 feet;
   3) small RDC 27 feet; and 4) mega RDC 30 feet.

<sup>&</sup>lt;sup>8</sup> http://www.arb.ca.gov/emfac/2014/ (last accessed on June 30, 2016).

<sup>&</sup>lt;sup>9</sup> A higher assumption was used for Imperial County in order to balance existing supply (inventory of total existing warehouse building area) and existing demand (cargo flows converted to occupied warehouse building area).

| t |                                                                             |
|---|-----------------------------------------------------------------------------|
| ť |                                                                             |
| 1 | Southern California Asso                                                    |
| ł | Southern California Association of Governments Industrial Warehousing Study |
|   | ıstrial Warehousing Study                                                   |

transload import cargo loads

| Table 1.2 Allemate Scenario-Specific inputs and calculations in the warehouse Space Porecasting Model | Table 1.2 | Alternate Scenario-Specific Inputs and Calculations in the Warehouse Space Forecasting Model |
|-------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------|

| Alternate<br>Number | Alternate<br>Scenario Name                                                                  | Changes to Existing Use-<br>Controlled Inputs in Relation<br>to Baseline Scenario                           | New User-Controlled Inputs                                                                                                                                        | Changes to Nonuser-Controlled Calculations in Relation to Baseline Scenario                                                                                                                                                                                                                                                             |
|---------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                   | Baseline Scenario plus<br>Efficiency Gain                                                   | <ul> <li>Modified A-Y equation-<br/>based efficiency<br/>parameters for all new<br/>developments</li> </ul> | None                                                                                                                                                              | • Net efficiency gain calculation due to lowered footprint requirement for all cargo that are to be handled at new developments                                                                                                                                                                                                         |
| 2                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Replacement of<br>Obsolete Buildings      | based efficiency<br>parameters for replaced                                                                 | <ul> <li>Era definition of building that<br/>becomes obsolete by<br/>decade</li> <li>Percentage of obsolete<br/>inventory to be replaced by<br/>decade</li> </ul> | <ul> <li>Net efficiency gain calculation due to lowered footprint requirement for some of the existing cargo and all added cargo</li> <li>Added submarket area vacant space calculation due to lowered footprint requirement for some of the existing cargo</li> </ul>                                                                  |
| 3                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Increased Mega RDCs<br>Share              | <ul> <li>Modified A-Y equation-<br/>based efficiency<br/>parameters for all new<br/>developments</li> </ul> | <ul> <li>Mega RDCs cargo loads<br/>percentage share of total<br/>cargo loads by 2040</li> </ul>                                                                   | <ul> <li>Net efficiency gain calculation due to lowered footprint requirement for all added cargo</li> <li>Mega RDCs cargo loads percentage share of total cargo loads for interim years interpolation</li> <li>Reduced general purpose warehouse cargo and increased mega RDCs cargo</li> </ul>                                        |
| 4                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Increased Crossdock<br>Transloading Share | <ul> <li>Modified A-Y equation-<br/>based efficiency<br/>parameters for all new<br/>developments</li> </ul> | <ul> <li>Crossdock transload import<br/>cargo loads percentage<br/>share of total import cargo<br/>loads by 2040</li> </ul>                                       | <ul> <li>Net efficiency gain calculation due to lowered footprint requirement for all added cargo</li> <li>Crossdock transload import cargo loads percentage share of total import cargo loads for interim years interpolation</li> <li>Reduced Import warehouse and port-related RDC cargo loads due to increased crossdock</li> </ul> |

| Alternate<br>Number | Alternate<br>Scenario Name                                                                                    | Changes to Existing Use-<br>Controlled Inputs in Relation<br>to Baseline Scenario                           | New User-Controlled Inputs                                                                                                                                         | Changes to Nonuser-Controlled Calculations<br>in Relation to Baseline Scenario                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Increased<br>E-commerce and<br>Fulfillment Centers<br>Share | based efficiency<br>parameters for all new                                                                  | <ul> <li>percentage share of total cargo loads by 2040</li> <li>Fulfillment center type mega RDC space percentage share of total mega RDC space by 2040</li> </ul> | <ul> <li>Net efficiency gain calculation due to lowered footprint requirement for all added cargo</li> <li>Mega RDCs cargo loads percentage share of total cargo loads for interim years interpolation</li> <li>Fulfillment center type mega RDC space percentage share of total mega RDC space for interim years interpolation</li> <li>Reduced general purpose warehouse cargo loads due to increased mega RDCs cargo loads</li> </ul> |
| 6                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Lower Border Crossing<br>Growth Scenario                    | <ul> <li>Modified A-Y equation-<br/>based efficiency<br/>parameters for all new<br/>developments</li> </ul> | "low-volume" scenario<br>origin-destination freight<br>flows data and forecasts                                                                                    | <ul> <li>Net efficiency gain calculation due to lowered footprint requirement for all added cargo</li> <li>Conversion of truck flows to loads and interim years interpolation</li> <li>Adjustment of port-related flows to keep international freight flows a constant</li> </ul>                                                                                                                                                        |
| 7                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Higher Border<br>Crossing Growth<br>Scenario                | <ul> <li>Modified A-Y equation-<br/>based efficiency<br/>parameters for all new<br/>developments</li> </ul> | "high-volume" scenario<br>origin-destination freight<br>flows data and forecasts                                                                                   | <ul> <li>Net efficiency gain calculation due to lowered footprint requirement for all added cargo</li> <li>Conversion of truck flows to loads and interim years interpolation</li> <li>Adjustment of port-related flows to keep international freight flows a constant</li> </ul>                                                                                                                                                        |
| 8                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Increased Developable<br>Space                              | <ul> <li>Modified A-Y equation-<br/>based efficiency<br/>parameters for all new<br/>developments</li> </ul> | <ul> <li>Additional developable<br/>space in building area</li> </ul>                                                                                              | <ul> <li>Net efficiency gain calculation due to lowered<br/>footprint requirement for all added cargo</li> </ul>                                                                                                                                                                                                                                                                                                                         |

Source: SCAG Warehousing Space Forecasting Model, Draft Version 1.0, June 30, 2016.

Note: Added cargo = forecast minus existing cargo; New development = New warehouse building constructed on planned industrial land or developable space for warehousing; and Replaced development = New warehouse building constructed on industrial land with existing obsolete warehouse building.

1-12

"All" developments refer to warehouse buildings belonging to all cargo markets and functional uses, not just the cargo market or functional use that the

alternate scenario is defined for. Alternate scenarios Alt 2 to Alt 8 include the effects of Alt 1, which is efficiency gain for all new developments or added cargo; thus, Alt 1 scenario also can be considered as a modified baseline scenario.

In all alternate scenarios (Alt 1 to Alt 8), the above values are replaced for all new developments with the values shown below. In addition, under Alternate Scenario 2, the above values also are replaced for all replaced developments with the values shown below. The resulting efficiency gains by cargo submarket also are shown in Table 1.3.

- $u_1$  is raised from 0.225 (or 22.5 percent) to 0.25 (or 25.0 percent) for all new warehouse developments and  $u_2$  is raised from 0.75 (or 75 percent) to 0.8 (or 80 percent) for crossdock transload facilities and fulfillment center type mega RDCs.
- *h* is raised from 22 feet to 25 feet for warehouses, from 27 feet to 35 feet for small RDCs, from 30 feet to 45 feet for mega RDCs.

| Cargo Submarket                                                                | U <sub>1</sub> | U <sub>2</sub> | t   | h  | Efficiency Gain<br>over Baseline <sup>®</sup> |
|--------------------------------------------------------------------------------|----------------|----------------|-----|----|-----------------------------------------------|
| Import Loads to Crossdock<br>Transload Facilities                              | 0.25           | 0.80           | 300 | 8  | 19%                                           |
| Import Loads to Import Warehouses                                              | 0.25           | 0.75           | 12  | 25 | 26%                                           |
| Import Loads to Small RDCs<br>(<500,000 SF)                                    | 0.25           | 0.75           | 12  | 35 | 44%                                           |
| Import Loads to General Purpose<br>Mega RDCs (>=500,000 SF)                    | 0.25           | 0.75           | 12  | 45 | 67%                                           |
| Import Loads to Fulfillment Center<br>Type Mega RDCs (>=500,000 SF)            | 0.25           | 0.80           | 24  | 45 | 78%                                           |
| Export Loads to Export Warehouses                                              | 0.25           | 0.75           | 12  | 25 | 26%                                           |
| Border-Crossing-Related Loads to<br>Warehouses (Imperial County)               | 0.25           | 0.75           | 36  | 25 | 26%                                           |
| Domestic Loads to Warehouses                                                   | 0.25           | 0.75           | 12  | 25 | 26%                                           |
| Domestic Loads to Small RDCs<br>(<500,000 sq. ft.)                             | 0.25           | 0.75           | 12  | 35 | 44%                                           |
| Domestic Loads to General Purpose<br>Mega RDCs (>= 500,000 sq. ft.)            | 0.25           | 0.75           | 12  | 45 | 67%                                           |
| Domestic Loads to Fulfillment<br>Center Type Mega RDCs (>=<br>500,000 sq. ft.) | 0.25           | 0.80           | 24  | 45 | 78%                                           |

## Table 1.3Modified A-Y Equation-Based Efficiency Parameters under All<br/>Alternate Scenarios for Warehousing

<sup>a</sup> Efficiency gain is measured by multiplying the four parameters together, and then computing the percentage difference between the products for the Baseline Scenario and the alternate scenarios.

Source: SCAG Warehousing Space Forecasting Model, Draft Version 1.0, June 30, 2016.

Note: A-Y parameters shown above are defined as follows: u1 = Warehouse cubic space utilization ratio and used for cargo at full capacity; u2 = Average percentage capacity utilization annually; t = Turnover of cargo in warehouse per year for particular cargo submarket type (e.g., t = 12 means 12 times per year); and h = Ceiling height (in feet) used for cargo storage for particular cargo submarket type.

## Definition and Percentage of Buildings that Become Obsolete by Decade

Under Alternate Scenario 2, for each decade in the forecast period (current year to 2020, 2021-2030, and 2031-2040), warehouse buildings are assumed to become obsolete based on when they were originally built or last renovated. Three options are available for each forecast period decade to define obsolescence. The options for current year to 2020, obsolete warehouse building can be one of the following: Pre-World War, Pre-1970, or Pre-1980 built or last renovated. Similar options are there for the other forecast period decades. The particular definitions for obsolescence were selected as follows: 1) for the current year to 2020 forecast period, warehouse buildings built or last renovated prior to 1970 are deemed obsolete; 2) for the 2021-2030 forecast period, warehouse buildings built or last renovated prior to 1980 are deemed obsolete; and 3) for the 2031-2040 forecast period, warehouse buildings built or 1990 are deemed obsolete.

It was assumed that only a portion of the obsolete inventory in a forecast period decade would be replaced with newer buildings with more efficient use of floor space. The particular assumptions for modeling Alternate Scenario 1 are as follows: 1) for the current year to 2020 forecast period, 75 percent of the warehouse buildings built or last renovated prior to 1970 would be replaced; 2) for the 2021-2030 forecast period, the remaining 25 percent of pre-1970 built or last renovated warehouse buildings and 75 percent of pre-1980 built or last renovated warehouse buildings would be replaced; and 3) for the 2031-2040 forecast period, the remaining 25 percent of pre-1980 built or last renovated warehouse buildings and 100 percent of pre-1990 built or last renovated warehouse buildings would be replaced.

## Mega RDC Cargo Loads Percentage Share of Total Cargo Loads by 2040

Under Alternate Scenarios 3 and 5, mega RDCs cargo loads, consisting of 18 percent of total cargo loads in 2014, are assumed to increase to 30 percent of total cargo loads by 2040. As mega RDCs are assumed to have higher ceiling heights than other facilities, they are considered more efficient with respect to square footage utilization.

# *Fulfillment Center Type Mega RDC Space Percentage Share of Total Mega RDC Space by 2040*

Under Alternate Scenario 5, fulfillment center type mega RDC space, consisting of 71 percent of total mega RDC space in 2014, is assumed to increase to 100 percent of total mega RDC space by 2040.

## Port-Related Crossdock Transload Import Cargo Loads Percentage Share of Total Import Cargo Loads by 2040

Under Alternate Scenario 4, port-related crossdock transload import cargo loads, consisting of 17 percent of total import cargo loads in 2014, are assumed to increase to 30 percent of total import cargo loads by 2040.

## Low- and High-Growth Rates for Border-Crossing Cargo Flows

Under Alternate Scenarios 6 and 7, low-volume and high-volume growth in bordercrossing cargo flows were used, respectively, along with the origin-destination cargo flows pattern. These are based on the ongoing SCAG border crossing study.

## Additional Developable Space in Building Area

Under Alternate Scenario 8, it was assumed that 50 million square feet of additional warehouse development would be completed in certain submarket areas. The development proposals consist of Heartland Specific Plan in City of Beaumont, World Logistics Center in Moreno Valley, March Business Center in Moreno Valley, Banning Business Park in City of Banning, and Redlands Logistics Center in City of Redlands. Around 98 percent of the space are added to Riverside Ind submarket area, and the remaining space is added to East San Bernardino County Ind submarket area.

## Impacts Estimation Methodologies

This study did not collect any traffic counts or other travel-related data for warehouse buildings. Instead, the model estimates travel-related impacts by combining the model outputs of occupied warehousing space forecasts with external inputs from SCAG and CARB to estimate warehousing-related truck miles traveled and criteria pollutant emissions related to truck movements to/from warehouses. The estimation is intended only as a rough indicator of the relative levels of impacts among alternate scenarios. More travel-related data would be required to validate the estimates, and more rigorous methods for calculating truck trip generation would be needed in future studies. This section describes the impacts estimation methodology.

## Warehousing Truck Miles Traveled

The outputs of the warehousing space forecasting model are regional total occupied warehousing space forecasts and their geographical distribution over 43 submarket areas. Every square foot of warehouse space was assumed to generate a fixed number of truck trips. The daily truck trip generation rates were assumed for the warehouses as shown in Table 1.4. For the purposes of this estimation, RDCs are assumed to represent high cube warehouses, and non-RDC warehouses are assumed to represent general warehouses.<sup>10</sup>

## Table 1.4Daily Heavy-Duty Truck Trip Generation Rate by WarehouseType

| Warehouse Type       | Assumed Equivalent<br>Warehouse Type | Heavy-Duty Truck Trip Generation Rate<br>(Daily Trucks per Thousand Square Feet) |
|----------------------|--------------------------------------|----------------------------------------------------------------------------------|
| General Warehouses   | Non-RDC                              | 1.068                                                                            |
| High Cube Warehouses | RDC                                  | 0.560                                                                            |

<sup>&</sup>lt;sup>10</sup> Sean McAtee, Cambridge Systematics' Memorandum to SCAG, "Warehouse Allocation Model – Adjustments to Travel Model Data," dated June 28, 2016.

Source: Cambridge Systematics' memorandum to Mike Ainsworth, Guoxiong Huang, SCAG, "Trip Generation and Trip Distribution Updates for Warehousing in the SCAG Region," revised September 24, 2013.

Depending on the cargo market type, average distance traveled per truck trip generated in a submarket area was assumed. For port-related and border-crossing-related cargo markets, the distance traveled per truck trip was measured<sup>11</sup> as multiples of 25 miles from the centroid of submarket area to San Pedro Bay Ports and nearest border crossing, respectively. For domestic cargo market, a uniform value of 50 miles was used as average distance traveled per truck trip in any submarket area. Table 1.5 shows the various miles per truck trip assumptions used.

For each submarket area, multiplying occupied warehousing space forecasts, the truck trip generation rate and the truck miles per truck trip, regional total warehousing truck vehicle-miles traveled (VMT) was estimated.

## Warehousing Truck Movement-Related Air Pollutant Emissions

The estimated warehousing truck VMT was combined with two external inputs to estimate warehousing truck-related air pollutant emissions. The two inputs are as follows: a) regional truck VMT distribution by speed bin from the latest model runs of SCAG travel demand model for 2012 (as a model run for 2014 is not available) and 2035; and b) 2014 California Air Resources Board emission factors by speed bin for trucks in South Coast Air Basin (SCAB) region.<sup>12</sup> The VMT distribution for the years 2036-2040 was kept the same as that in the year 2035. Since the warehousing truck miles estimation is approximate, the emission estimates are also approximate.

<sup>&</sup>lt;sup>11</sup> Only geometric distance between point locations, and not the distance over the road network.

<sup>&</sup>lt;sup>12</sup> http://www.arb.ca.gov/emfac/2014/ (last accessed on June 30, 2016)

| Submarket<br>Area ID | Submarket Area                  | County         | Assumed Average<br>Distance Traveled<br>per Port Truck Trip | Assumed Average<br>Distance Traveled<br>per Border-Crossing<br>Truck Trip | Assumed Average<br>Distance Traveled<br>per Domestic<br>Truck Trip |
|----------------------|---------------------------------|----------------|-------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1                    | Long Beach Area Ind             | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 2                    | Carson/Rancho Domingz Ind       | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 3                    | Lynwood/Paramount Ind           | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 4                    | Mid Counties-LA Ind             | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 5                    | Vernon Area Ind                 | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 6                    | Commerce Area Ind               | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 7                    | Southwest SGV Ind               | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 8                    | Lower SGV Ind                   | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 9                    | Eastern SGV Ind                 | Los Angeles    | 50                                                          | 125                                                                       | 50                                                                 |
| 10                   | West San Bernardino County Ind  | San Bernardino | 50                                                          | 100                                                                       | 50                                                                 |
| 11                   | Ontario Airport Area Ind        | San Bernardino | 50                                                          | 125                                                                       | 50                                                                 |
| 12                   | East San Bernardino County Ind  | San Bernardino | 75                                                          | 100                                                                       | 50                                                                 |
| 13                   | Gardena/110 Corridor Ind        | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 14                   | Central LA Ind                  | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 15                   | El Segundo/Hawthorne Ind        | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 16                   | North Orange County Ind         | Orange         | 25                                                          | 100                                                                       | 50                                                                 |
| 17                   | West Orange County Ind          | Orange         | 25                                                          | 100                                                                       | 50                                                                 |
| 18                   | Riverside Ind                   | Riverside      | 50                                                          | 100                                                                       | 50                                                                 |
| 19                   | North San Bernardino County Ind | San Bernardino | 75                                                          | 125                                                                       | 50                                                                 |
| 20                   | Westside Ind                    | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 21                   | SFV East Ind                    | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
|                      |                                 |                |                                                             |                                                                           |                                                                    |

# Table 1.5Assumptions on Average Distance Traveled per Truck Trip by Cargo Market Type and Submarket AreaMiles

1-18

| Submarket<br>Area ID | Submarket Area                     | County         | Assumed Average<br>Distance Traveled<br>per Port Truck Trip | Assumed Average<br>Distance Traveled<br>per Border-Crossing<br>Truck Trip | Assumed Average<br>Distance Traveled<br>per Domestic<br>Truck Trip |
|----------------------|------------------------------------|----------------|-------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|
| 22                   | East LA Cnty Outlying Ind          | Los Angeles    | 50                                                          | 150                                                                       | 50                                                                 |
| 23                   | Ventura County Ind                 | Ventura        | 50                                                          | 175                                                                       | 50                                                                 |
| 24                   | Coachella Valley Ind               | Riverside      | 100                                                         | 75                                                                        | 50                                                                 |
| 25                   | Corona Ind                         | Riverside      | 50                                                          | 150                                                                       | 50                                                                 |
| 26                   | Northwest SGV Ind                  | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 27                   | Orange County Outlying Ind         | Orange         | 50                                                          | 75                                                                        | 50                                                                 |
| 28                   | John Wayne Airport Area Ind        | Orange         | 25                                                          | 100                                                                       | 50                                                                 |
| 29                   | SCV/Lancaster/Palmdale Ind         | Los Angeles    | 50                                                          | 150                                                                       | 50                                                                 |
| 30                   | SFV West Ind                       | Los Angeles    | 25                                                          | 150                                                                       | 50                                                                 |
| 31                   | South Orange County Ind            | Orange         | 50                                                          | 75                                                                        | 50                                                                 |
| 32                   | South Riverside County Ind         | Riverside      | 50                                                          | 100                                                                       | 50                                                                 |
| 33                   | Upper SGV Ind                      | Los Angeles    | 50                                                          | 125                                                                       | 50                                                                 |
| 34                   | Torrance/Beach Cities Ind          | Los Angeles    | 25                                                          | 125                                                                       | 50                                                                 |
| 35                   | San Bernardino County Outlying Ind | San Bernardino | 100                                                         | 100                                                                       | 50                                                                 |
| 36                   | Riverside County Outlying Ind      | Riverside      | 100                                                         | 50                                                                        | 50                                                                 |
| 37                   | Conejo Valley Ind                  | Los Angeles    | 50                                                          | 150                                                                       | 50                                                                 |
| 38                   | NE LA Cnty Outlying Ind            | Los Angeles    | 75                                                          | 150                                                                       | 50                                                                 |
| 39                   | Antelope Valley Ind                | Los Angeles    | 50                                                          | 150                                                                       | 50                                                                 |
| 40                   | NW LA Cnty Outlying Ind            | Los Angeles    | 75                                                          | 175                                                                       | 50                                                                 |
| 41                   | Ventura Cnty Outlying Ind          | Ventura        | 75                                                          | 175                                                                       | 50                                                                 |
| 42                   | Imperial County Ind                | Imperial       | 150                                                         | 25                                                                        | 50                                                                 |
| 43                   | Catalina Island Ind                | Los Angeles    | N/A                                                         | N/A                                                                       | 10                                                                 |

Southern California Association of Governments Industrial Warehousing Study

Source: Cambridge Systematics, Inc.'s GIS Analysis.

1-19

# 2.0 Alternate Scenarios Evaluation, Impacts Assessment, and Policy Implications

This section discusses the results and findings of quantitative evaluation of alternate scenarios in terms of future occupied warehouse space at regional and submarket area level and at cargo market level. This also discusses the results and findings of quantitative assessment of future occupied warehouse space-related travel impacts in truck VMT and air quality impacts in tons of emissions of CO<sub>2</sub>, CO, NO<sub>x</sub>, ROG, PM<sub>10</sub>, and PM<sub>2.5</sub>. Lastly, this section discusses the implications of the alternate scenarios evaluation and impacts assessment on policy and decision-making for stakeholders, including SCAG, local governments, BCOs, real-estate developers, and warehouse operators.

## 2.1 EVALUATION OF ALTERNATE SCENARIOS

# Alternate Scenarios Comparison of Region-Level Unconstrained and Constrained Total Demand and Shortfall

Figure 2.1 and Table 2.1 shows an overall summary of the warehousing square footage forecasts to 2040 by scenario. For each alternate scenario, Figure 2.1 includes the 2040 regional unconstrained occupied warehouse space and the 2040 regional constrained occupied warehouse space estimated using the warehouse space forecasting model; and comparisons to the 2014 regional occupied warehouse space, which is 1,134 million square feet. In addition, Table 2.1 shows the estimated shortfall (that is, unconstrained minus constrained demand) and the expected first year of shortfall at regional level by alternate scenario.

## 2040 Region-Level Unconstrained Total Demand

Under the baseline scenario (Alt O), the unconstrained regional occupied warehouse space is expected to reach 1,809 million square feet in 2040, which is about 60 percent increase over the demand in 2014 or an annualized growth rate of 1.8 percent.





Source: SCAG Warehousing Space Forecasting Model, Draft Version 1.0, June 30, 2016.

Note:The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus<br/>Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete<br/>Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4:<br/>Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5:<br/>Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share;<br/>Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7:<br/>Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8:<br/>Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

| Alternate<br>Number | Alternate Scenario Name                                                                              | 2040<br>Unconstrained<br>Occupied<br>Warehousing<br>Space | 2040<br>Constrained<br>Occupied<br>Warehousing<br>Space | Shortfall<br>in Occupied<br>Warehousing<br>Space | First Year<br>of Shortfall<br>>5 Million<br>Square Feet |
|---------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|
| 0                   | Baseline                                                                                             | 1,809                                                     | 1,514                                                   | 295                                              | 2029                                                    |
| 1                   | Baseline Scenario plus Efficiency<br>Gain                                                            | 1,640                                                     | 1,514                                                   | 126                                              | 2035                                                    |
| 2                   | Baseline Scenario plus Efficiency<br>Gain plus Replacement of<br>Obsolete Buildings                  | 1,547                                                     | 1,547                                                   | 0                                                | N/A                                                     |
| 3                   | Baseline Scenario plus Efficiency<br>Gain plus Increased Mega RDCs<br>Share                          | 1,503                                                     | 1,503                                                   | 0                                                | N/A                                                     |
| 4                   | Baseline Scenario plus Efficiency<br>Gain plus Increased Crossdock<br>Transloading Share             | 1,611                                                     | 1,514                                                   | 97                                               | 2036                                                    |
| 5                   | Baseline Scenario plus Efficiency<br>Gain plus Increased E-commerce<br>and Fulfillment Centers Share | 1,491                                                     | 1,491                                                   | 0                                                | N/A                                                     |
| 6                   | Baseline Scenario plus Efficiency<br>Gain plus Lower Border Crossing<br>Growth Scenario              | 1,640                                                     | 1,508                                                   | 132                                              | 2035                                                    |
| 7                   | Baseline Scenario plus Efficiency<br>Gain plus Higher Border Crossing<br>Growth Scenario             | 1,640                                                     | 1,520                                                   | 120                                              | 2035                                                    |
| 8                   | Baseline Scenario plus Efficiency<br>Gain plus Increased Developable<br>Space                        | 1,640                                                     | 1,563                                                   | 77                                               | 2037                                                    |

# Table 2.1SCAG Region-Level Warehousing Space Forecasting Model Key Results,2040*Millions of Square Feet*

Source: SCAG Warehousing Space Forecasting Model, Draft Version 1.0, June 30, 2016.

All alternate scenarios have a drop in unconstrained demand compared to Alt O. The minimum drop in unconstrained demand is 169 million square feet (equals 1,809 million square feet minus 1,640 million square feet). This indicates that there is a significant advantage in terms of space utilization to constructing and operating new warehouse developments with higher ceiling heights, better layouts that are compatible with use of modern equipment, and higher automation for improved overall operational efficiency.

Since the alternate scenario of baseline scenario plus efficiency gain (Alt 1) also acts as a modified baseline for the other alternate scenarios, comparisons also can be made between Alt 2 to Alt 8 against Alt 1. Based on this comparison, baseline scenario plus efficiency gain plus lower border crossing growth scenario (Alt 6), baseline scenario plus efficiency gain plus higher border crossing growth scenario (Alt 7), and baseline scenario

plus efficiency gain plus increased developable space (Alt 8) have the nearly the same unconstrained demand as Alt 1. Alt 6 and Alt 7 only result in a shift in cargo between the port-related and border-crossing-related cargo markets; and although the two cargo markets have different warehouse stop assumptions, the change in overall unconstrained demand is too small to notice. Under Alt 8, only the regional supply of warehouse space is modified, and no changes take place in the regional unconstrained demand for warehouse space.

The other scenarios where there is a noticeable drop in unconstrained demand compared to Alt 1 and the reasons for the same are explained below.

- Baseline scenario plus efficiency gain plus replacement of obsolete buildings (Alt 2). The replacement buildings have higher ceilings than the obsolete buildings, so within the same square footage they can store more cargo. So the overall cargo forecasts remaining the same, this alternate scenario results in lowered unconstrained demand for warehouse space.
- Baseline scenario plus efficiency gain plus increased mega RDCs share (Alt 3). Mega RDCs have higher ceilings than general purpose warehouses, so within the same square footage they can store more cargo. So the overall cargo forecasts remaining the same, this alternate scenario results in lowered unconstrained demand for warehouse space.
- Baseline scenario plus efficiency gain plus increased crossdock transloading share (Alt 4). Crossdock transload facilities have a high cargo turnover rate, so they reduce the need for storage of cargo substantially, while providing trucking-related cost savings. So the overall cargo forecasts remaining the same, this alternate scenario results in lowered unconstrained demand for warehouse space. The drop in regional unconstrained demand for warehouse space is much smaller compared to Alt 4, as the crossdock transload cargo market forms a very small part of the overall cargo.
- Baseline scenario plus efficiency gain plus increased e-commerce and fulfillment centers share (Alt 5). For the same reasons as Alt 3, this alternate scenario results in lowered unconstrained demand for warehouse space. It is even lower than Alt 3 because fulfillment centers are assumed to have a higher cargo turnover rate compared to general use of mega RDCs space.

These additional drops in unconstrained demand indicate regional storage demand management opportunities that can be supported by appropriate regional and local policies.

Under the best case demand management scenario, namely, Alt 5, the regional occupied warehouse space is expected to reach 1,491 million square feet in 2040, which is about 31 percent increase over the demand in 2014 or an annualized growth rate of 1.1 percent.

## 2040 Region-Level Constrained Total Demand and Shortfall

Existing vacant and developable space act as constraints to allocation of the unconstrained total demand for warehouse space in most submarket areas. Under the baseline and all alternate scenarios, the developable space in Imperial County, as an exception, is allowed to increase in response to the growth in demand in border-crossing-related cargo, and that too when the existing developable space in the SCAG region is depleted. Only under Alt 8, the supply for existing developable space is increased by 50 million square feet, in particular, submarket areas, as explained earlier in Section 1.4 of this report) to meet the demand for warehouse space for all cargo markets.

The shortfall by alternate scenario was estimated as the difference between the estimate of regional unconstrained demand for warehouse space and the regional total allocated occupied warehouse space, and adjustments in Imperial County (or the regional constrained demand for warehouse space). Under Alt 2, Alt 3, and Alt 5, there are no shortages in warehouse space at the end of the forecast year 2040. This means that within the model, the unconstrained demand is fully met by the available supply. While these represent the best case scenario to meet the future warehouse space demand up to the year 2040, because the supply and demand are at the equilibrium, the demand beyond the year 2040 might exceed the supply.

On the other hand, there are varying levels of shortages under Alt O, Alt 1, Alt 4, Alt 6, Alt 7, and Alt 8, as shown in Table 2.1. Under the worst case supply shortage scenario, namely, Alt O, the shortage in warehouse space is expected to start in 2029 and increase gradually to 295 million by 2040.

## 2014-2040 Region-Level Constrained and Unconstrained Total Demand

Figure 2.2 and Figure 2.3 show alternate scenarios comparisons of the rates of change between 2014 and 2040 in unconstrained and constrained demand for warehouse space. Alt O has the fastest rate of change, while Alt 5 has the slowest rate of change.



Figure 2.2 Alternate Scenarios Comparison of SCAG Region-Level Unconstrained Warehousing Space Forecasts, 2014-2040 *Millions of Square Feet* 

Note:The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus<br/>Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete<br/>Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4:<br/>Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5:<br/>Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share;<br/>Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7:<br/>Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8:<br/>Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

Source: SCAG Warehousing Space Forecasting Model, Draft Version 1.0, June 30, 2016.



Figure 2.3 Alternate Scenarios Comparison of SCAG Region-Level Constrained Warehousing Space Forecasts, 2014-2040 *Millions of Square Feet* 

# Alternate Scenarios Comparison of Region-Level Unconstrained Demand by Cargo Submarket Type

Table 2.2 and Table 2.3 show alternate scenarios comparison of estimated 2040 unconstrained warehoused loads and 2040 unconstrained occupied warehouse space by cargo submarket type, and the corresponding 2014 estimates.

Table 2.2 shows that the overall warehoused loads in 2040 are the same for all alternate scenarios. Under Alt 6, a shift of warehoused loads from border-crossing-related cargo market to port-related and domestic cargo markets was assumed. This is equivalent to reduction in border trade activities at California-Mexico border. On the other hand, under Alt 7, a shift of warehoused loads to border-crossing-related cargo market from port-related and domestic cargo markets was assumed. This is equivalent to related and domestic cargo markets was assumed. This is equivalent to related and domestic cargo markets was assumed. This is equivalent to increasing border trade activities.

Source: SCAG Warehousing Space Forecasting Model, Draft Version 1.0, June 30, 2016.

Note: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

| Cargo<br>Marke |                                                                                      | 2014<br>Warehous |      | 2040 Ur | nconstrai | ned Ware | ehouse Lo | oads by A | Alternate | Scenario |      |
|----------------|--------------------------------------------------------------------------------------|------------------|------|---------|-----------|----------|-----------|-----------|-----------|----------|------|
| t              | Cargo Submarket                                                                      | e Loads          | 0    | 1       | 2         | 3        | 4         | 5         | 6         | 7        | 8    |
| Port R         | elated                                                                               | 6.6              | 13.7 | 13.7    | 13.7      | 13.7     | 13.7      | 13.7      | 14.0      | 13.4     | 13.7 |
| 1              | Ports Import Loads to Crossdock Transload<br>Facilities                              | 1.4              | 3.1  | 3.1     | 3.1       | 3.1      | 4.6       | 3.1       | 3.1       | 3.0      | 3.1  |
| 2              | Ports Import Loads to Small RDCs (<500,000 SF)                                       | 0.7              | 1.4  | 1.4     | 1.4       | 1.4      | 1.4       | 1.4       | 1.4       | 1.4      | 1.4  |
| 3              | Ports Import Loads to Mega RDCs<br>(>=500,000 SF)                                    | 1.0              | 1.9  | 1.9     | 1.9       | 2.7      | 1.9       | 2.7       | 1.9       | 1.9      | 1.9  |
| 4              | Ports Import Loads to Import Warehouses                                              | 3.0              | 6.8  | 6.8     | 6.8       | 6.0      | 5.4       | 6.0       | 7.0       | 6.7      | 6.8  |
| 5              | Ports Export Loads to Export Warehouses                                              | 0.5              | 0.5  | 0.5     | 0.5       | 0.5      | 0.5       | 0.5       | 0.7       | 0.4      | 0.5  |
| Border         | -Crossing Related                                                                    | 0.7              | 1.5  | 1.5     | 1.5       | 1.5      | 1.5       | 1.5       | 1.2       | 1.9      | 1.5  |
| 6              | Border Crossing Import Loads to Crossdock<br>Transload Facilities in Imperial County | 0.0              | 0.1  | 0.1     | 0.1       | 0.1      | 0.1       | 0.1       | 0.1       | 0.1      | 0.1  |
| 7              | Border Crossing Import Loads to Small RDCs<br>(<500,000 SF)                          | 0.0              | 0.1  | 0.1     | 0.1       | 0.1      | 0.1       | 0.1       | 0.1       | 0.1      | 0.1  |
| 8              | Border Crossing Import Loads to Mega RDCs<br>(>=500,000 SF)                          | 0.0              | 0.1  | 0.1     | 0.1       | 0.1      | 0.1       | 0.1       | 0.1       | 0.1      | 0.1  |
| 9              | Border Crossing Import Loads to Import<br>Warehouses (Excl. Exports via Ports)       | 0.3              | 0.7  | 0.7     | 0.7       | 0.7      | 0.7       | 0.7       | 0.6       | 0.9      | 0.7  |
| 10             | Border Crossing Export Loads to Export<br>Warehouses (Excl. Imports via Ports)       | 0.2              | 0.5  | 0.5     | 0.5       | 0.5      | 0.5       | 0.5       | 0.4       | 0.7      | 0.5  |
| Domes          | stic                                                                                 | 42.7             | 65.8 | 65.8    | 65.8      | 65.8     | 65.8      | 65.8      | 65.9      | 65.8     | 65.8 |
| 11             | Domestic Loads to Small RDCs (<500,000<br>SF)                                        | 5.9              | 9.6  | 9.6     | 9.6       | 9.6      | 9.6       | 9.6       | 9.6       | 9.6      | 9.6  |
| 12             | Domestic Loads to Mega RDCs (>= 500,000<br>SF)                                       | 8.1              | 13.1 | 13.1    | 13.1      | 21.5     | 13.1      | 21.5      | 13.1      | 13.1     | 13.1 |
| 13             | Domestic Loads to General Purpose<br>Warehouses                                      | 28.7             | 43.1 | 43.1    | 43.1      | 34.8     | 43.1      | 34.8      | 43.1      | 43.1     | 43.1 |
| Total          |                                                                                      | 50.1             | 81.1 | 81.1    | 81.1      | 81.1     | 81.1      | 81.1      | 81.1      | 81.1     | 81.1 |

# Table 2.2Unconstrained Warehoused Loads by Cargo Submarket, 2014 and 2040 by Alternate Scenario<br/>Millions of TEUs

Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Note: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

## Table 2.3Unconstrained Occupied Warehouse Space by Cargo Submarket, 2014 and 2040 by Alternate ScenarioMillions of Square Feet

| Cargo      |                                                                                         | 2014 Occupied      | 2040  | Unconst | rained O | ccupied \ | Narehou | se Space | e by Alter | rnate Sce | nario |
|------------|-----------------------------------------------------------------------------------------|--------------------|-------|---------|----------|-----------|---------|----------|------------|-----------|-------|
| Marke<br>t | Cargo Submarket                                                                         | Warehouse<br>Space | 0     | 1       | 2        | 3         | 4       | 5        | 6          | 7         | 8     |
| Port Re    | elated                                                                                  | 126.6              | 226.2 | 219.8   | 212.9    | 197.0     | 211.6   | 231.8    | 219.0      | 226.2     | 226.2 |
| 1          | Ports Import Loads to Crossdock<br>Transload Facilities                                 | 4.0                | 8.2   | 8.1     | 8.2      | 11.9      | 8.2     | 8.3      | 8.2        | 8.2       | 8.2   |
| 2          | Ports Import Loads to Small RDCs<br>(<500,000 SF)                                       | 16.2               | 25.5  | 24.7    | 25.5     | 25.5      | 25.5    | 25.8     | 25.3       | 25.5      | 25.5  |
| 3          | Ports Import Loads to Mega RDCs<br>(>=500,000 SF)                                       | 11.7               | 17.0  | 16.6    | 22.3     | 17.0      | 21.0    | 17.1     | 16.8       | 17.0      | 17.0  |
| 4          | Ports Import Loads to Import Warehouses                                                 | 81.8               | 161.6 | 157.3   | 142.9    | 128.7     | 142.9   | 164.3    | 157.8      | 161.6     | 161.6 |
| 5          | Ports Export Loads to Export Warehouses                                                 | 12.8               | 13.9  | 13.2    | 13.9     | 13.9      | 13.9    | 16.2     | 10.9       | 13.9      | 13.9  |
| Border     | -Crossing Related                                                                       | 14.4               | 31.2  | 31.1    | 30.9     | 31.2      | 30.9    | 25.2     | 38.2       | 31.2      | 31.2  |
| 6          | Border Crossing Import Loads to<br>Crossdock Transload Facilities in Imperial<br>County | 0.1                | 0.3   | 0.3     | 0.3      | 0.3       | 0.3     | 0.2      | 0.4        | 0.3       | 0.3   |
| 7          | Border Crossing Import Loads to Small<br>RDCs (<500,000 SF)                             | 0.8                | 1.3   | 1.3     | 1.3      | 1.3       | 1.3     | 1.1      | 1.5        | 1.3       | 1.3   |
| 8          | Border Crossing Import Loads to Mega<br>RDCs (>=500,000 SF)                             | 0.5                | 0.9   | 0.9     | 1.0      | 0.9       | 1.0     | 0.7      | 1.0        | 0.9       | 0.9   |
| 9          | Border Crossing Import Loads to Import<br>Warehouses (Excl. Exports via Ports)          | 6.5                | 14.7  | 14.7    | 14.3     | 14.7      | 14.3    | 11.9     | 18.0       | 14.7      | 14.7  |
| 10         | Border Crossing Export Loads to Export<br>Warehouses (Excl. Imports via Ports)          | 6.5                | 14.0  | 14.0    | 14.0     | 14.0      | 14.0    | 11.1     | 17.3       | 14.0      | 14.0  |

2-9

| Cargo      |                                                 | 2014 Occupied      | 2040 Unconstrained Occupied Warehouse Space by Alternate Scenario |             |             |             |             |             |             |             |             |  |
|------------|-------------------------------------------------|--------------------|-------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|
| Marke<br>t | Cargo Submarket                                 | Warehouse<br>Space | 0                                                                 | 1           | 2           | 3           | 4           | 5           | 6           | 7           | 8           |  |
| Domes      | stic                                            | 993.5              | 1,382.<br>6                                                       | 1,295.<br>6 | 1,259.<br>2 | 1,382.<br>6 | 1,248.<br>8 | 1,382.<br>9 | 1,382.<br>6 | 1,382.<br>6 | 1,382.<br>6 |  |
| 11         | Domestic Loads to Small RDCs<br>(<500,000 SF)   | 129.5              | 184.0                                                             | 171.8       | 184.0       | 184.0       | 184.0       | 184.0       | 184.0       | 184.0       | 184.0       |  |
| 12         | Domestic Loads to Mega RDCs (>=<br>500,000 SF)  | 93.2               | 124.4                                                             | 119.9       | 178.5       | 124.4       | 168.2       | 124.4       | 124.4       | 124.4       | 124.4       |  |
| 13         | Domestic Loads to General Purpose<br>Warehouses | 770.8              | 1,074.1                                                           | 1,003.<br>9 | 896.6       | 1,074.1     | 896.6       | 1,074.<br>5 | 1,074.1     | 1,074.1     | 1,074.1     |  |
| Total      |                                                 | 1,134.4            | 1,640.<br>0                                                       | 1,546.<br>6 | 1,502.<br>9 | 1,610.<br>8 | 1,491.<br>3 | 1,639.<br>8 | 1,639.<br>8 | 1,640.<br>0 | 1,640.<br>0 |  |

Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Note: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

Table 2.3 shows that the overall occupied warehouse space are not the same, although overall warehoused loads are the same for all alternate scenarios because the warehouse facilities handling the cargo submarket types have varying operational efficiencies. The minimum and maximum growth percentages and annualized growth rates for unconstrained demand for warehouse space by cargo market across alternate scenarios are shown in Table 2.4.

| Coendrios                         |             |              |                              |      |  |  |  |
|-----------------------------------|-------------|--------------|------------------------------|------|--|--|--|
|                                   | Growth Perc | entage Range | Annualized Growth Rate Range |      |  |  |  |
| Cargo Market                      | Min.        | Max.         | Min.                         | Max. |  |  |  |
| Port-related market               | 56%         | 83%          | 1.7%                         | 2.4% |  |  |  |
| Border Crossing-related<br>market | 75%         | 165%         | 2.2%                         | 3.8% |  |  |  |
| Domestic market                   | 26%         | 39%          | 0.9%                         | 1.3% |  |  |  |
| Total                             | 31%         | 45%          | 1.1%                         | 1.4% |  |  |  |

# Table 2.42014-2040 Minimum and Maximum Growth in Unconstrained<br/>Occupied Warehouse Space by Cargo Market across Alternate<br/>Scenarios

Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

## Alternate Scenarios Comparison of Region-Level Percentage Demand Met by Cargo Submarket Type

Table 2.5 show alternate scenarios comparison of 2040 percentage demand met in occupied warehouse space by cargo submarket type. The percentage demand met was computed by dividing constrained occupied warehouse space by unconstrained occupied warehouse space.

In 2014, 100 percent of the demand in all cargo markets were met by existing inventory of warehouse buildings.

Under the baseline scenario or Alt O, border-crossing-related demand for warehouse space is fully met, while 93 percent of port-related demand for warehouse space are met, and only 82 percent of domestic-related demand for warehouse space are met.

Under all alternate scenarios, port-related and border-crossing-related demand for warehouse space are nearly met. The reason for meeting border-crossing-related demand for warehouse space was due to allowing Imperial County's developable space to expand to meet added demand. The percentage demand met is high for port-related cargo market type, because the port forecasts indicate that the port reaches its highest terminals throughput (cargo volumes) in 2035, and the demand remains constant between 2035 and 2040. As the first year of shortage of warehouse space is mostly on or after 2035, the port-related demand for warehouse space is fully met. On the other hand, due to continued growth in domestic cargo beyond the first year of shortage, its demand for warehouse space is not fully met under alternate scenarios, except Alt 2, Alt 3, and Alt 5.

# Table 2.5Percentage Demand in Occupied Warehouse Space Met by Cargo Submarket, 2014 and 2040 by<br/>Alternate Scenario<br/>Percentage

| Cargo      |                                                                                         | 2014<br>Demand in      |            | 2040 [     | Demand ir  | n Warehou  | ise Space  | Met by A   | lternate S | Scenario   |            |
|------------|-----------------------------------------------------------------------------------------|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Marke<br>t | Cargo Submarket                                                                         | Warehouse<br>Space Met | 0          | 1          | 2          | 3          | 4          | 5          | 6          | 7          | 8          |
| Port Re    | elated                                                                                  | 100.0%                 | 92.8%      | 99.9%      | 100.0<br>% | 100.0<br>% | 99.8%      | 100.0<br>% | 99.9%      | 100.0<br>% | 99.9%      |
| 1          | Ports Import Loads to Crossdock<br>Transload Facilities                                 | 100.0%                 | 88.7%      | 97.1%      | 100.0%     | 100.0%     | 96.6%      | 100.0%     | 97.1%      | 100.0%     | 97.1%      |
| 2          | Ports Import Loads to Small RDCs<br>(<500,000 SF)                                       | 100.0%                 | 93.7%      | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     |
| 3          | Ports Import Loads to Mega RDCs<br>(>=500,000 SF)                                       | 100.0%                 | 93.5%      | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     |
| 4          | Ports Import Loads to Import<br>Warehouses                                              | 100.0%                 | 92.7%      | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     |
| 5          | Ports Export Loads to Export<br>Warehouses                                              | 100.0%                 | 93.7%      | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     |
| Border     | -Crossing Related                                                                       | 100.0%                 | 100.0<br>% |
| 6          | Border Crossing Import Loads to<br>Crossdock Transload Facilities in<br>Imperial County | 100.0%                 | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     |
| 7          | Border Crossing Import Loads to Small<br>RDCs (<500,000 SF)                             | 100.0%                 | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     |
| 8          | Border Crossing Import Loads to Mega<br>RDCs (>=500,000 SF)                             | 100.0%                 | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     |
| 9          | Border Crossing Import Loads to Import<br>Warehouses (Excl. Exports via Ports)          | 100.0%                 | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     | 100.0%     |

| Cargo      |                                                                                | 2014<br>Demand in      |        | 2040 [ | Demand ir  | ı Warehou  | ise Space | Met by A   | lternate S | cenario |        |
|------------|--------------------------------------------------------------------------------|------------------------|--------|--------|------------|------------|-----------|------------|------------|---------|--------|
| Marke<br>t | Cargo Submarket                                                                | Warehouse<br>Space Met | 0      | 1      | 2          | 3          | 4         | 5          | 6          | 7       | 8      |
| 10         | Border Crossing Export Loads to Export<br>Warehouses (Excl. Imports via Ports) | 100.0%                 | 100.0% | 100.0% | 100.0%     | 100.0%     | 100.0%    | 100.0%     | 100.0%     | 100.0%  | 100.0% |
| Domes      | tic                                                                            | 100.0%                 | 81.8%  | 90.9%  | 100.0<br>% | 100.0<br>% | 93.0%     | 100.0<br>% | 90.5%      | 91.3%   | 94.5%  |
| 11         | Domestic Loads to Small RDCs<br>(<500,000 SF)                                  | 100.0%                 | 85.0%  | 93.5%  | 100.0%     | 100.0%     | 95.5%     | 100.0%     | 93.4%      | 94.6%   | 96.6%  |
| 12         | Domestic Loads to Mega RDCs (>=<br>500,000 SF)                                 | 100.0%                 | 84.2%  | 94.1%  | 100.0%     | 100.0%     | 95.6%     | 100.0%     | 94.1%      | 95.0%   | 97.0%  |
| 13         | Domestic Loads to General Purpose<br>Warehouses                                | 100.0%                 | 80.9%  | 90.1%  | 100.0%     | 100.0%     | 92.3%     | 100.0%     | 89.6%      | 90.3%   | 93.8%  |
| Total      |                                                                                | 100.0%                 | 83.7%  | 92.3%  | 100.0<br>% | 100.0<br>% | 94.0%     | 100.0<br>% | 92.0%      | 92.7%   | 95.3%  |

Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Note: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

## Alternate Scenarios Comparison of Submarket Area-Level Constrained Demand

Table 2.6 shows alternate scenarios comparison for projected constrained demand for warehouse space by submarket area.

The only scenarios showing a total increase in constrained demand are Alt 2 (replacement of obsolete facilities) and Alt 8 (more development). With respect to Alt 8, the only two submarkets with an increase in constrained demand are Submarket Area ID 18 (Riverside Industrial) and Submarket Area ID 12 (East San Bernardino County Industrial). The largest increase in assumed supply is projected to be in Submarket Area ID 18, largely because of the proposed World Logistics Center in Moreno Valley.

Aside the increase in the total, Imperial County's allocated demand could vary between 10 million and 20 million square feet, depending on the low growth or the high growth of border-crossing cargo flows (Alt 6 or Alt 7, respectively).

|                       |                                   | 2014<br>Occupied    |         | 2040    | O Occupied | Warehouse | e Space by | Alternate S | cenario Nu | ımber   |         |
|-----------------------|-----------------------------------|---------------------|---------|---------|------------|-----------|------------|-------------|------------|---------|---------|
| Submarke<br>t Area ID | Submarket Area                    | Warehous<br>e Space | Alt O   | Alt 1   | Alt 2      | Alt 3     | Alt 4      | Alt 5       | Alt 6      | Alt 7   | Alt 8   |
| 1                     | Long Beach Area Ind               | 15,431              | 22,845  | 22,845  | 25,566     | 22,845    | 22,845     | 22,845      | 22,845     | 22,845  | 22,845  |
| 2                     | Carson/Rancho<br>Domingz Ind      | 58,063              | 67,715  | 67,723  | 78,109     | 67,773    | 67,758     | 67,773      | 67,623     | 67,879  | 67,723  |
| 3                     | Lynwood/Paramount<br>Ind          | 8,213               | 8,228   | 8,228   | 9,320      | 8,228     | 8,228      | 8,228       | 8,228      | 8,229   | 8,228   |
| 4                     | Mid Counties-LA Ind               | 58,491              | 62,376  | 62,376  | 71,320     | 62,376    | 62,376     | 62,377      | 62,376     | 62,379  | 62,376  |
| 5                     | Vernon Area Ind                   | 47,418              | 59,179  | 59,189  | 58,570     | 59,203    | 59,208     | 59,203      | 59,156     | 59,245  | 59,189  |
| 6                     | Commerce Area Ind                 | 52,349              | 54,952  | 54,952  | 63,199     | 54,952    | 54,953     | 54,952      | 54,949     | 54,957  | 54,952  |
| 7                     | Southwest SGV Ind                 | 6,339               | 6,341   | 6,341   | 7,445      | 6,341     | 6,341      | 6,341       | 6,341      | 6,342   | 6,341   |
| 8                     | Lower SGV Ind                     | 63,737              | 88,921  | 88,921  | 97,593     | 88,921    | 88,921     | 88,921      | 88,921     | 88,924  | 88,921  |
| 9                     | Eastern SGV Ind                   | 18,764              | 18,919  | 18,919  | 21,428     | 18,919    | 18,919     | 18,919      | 18,919     | 18,920  | 18,919  |
| 10                    | West San Bernardino<br>County Ind | 41,460              | 43,857  | 43,857  | 46,666     | 43,857    | 43,857     | 43,857      | 43,857     | 43,859  | 43,857  |
| 11                    | Ontario Airport Area<br>Ind       | 159,545             | 257,776 | 257,816 | 268,872    | 257,992   | 257,816    | 257,979     | 257,715    | 257,693 | 257,816 |
| 12                    | East San Bernardino<br>County Ind | 69,335              | 72,127  | 72,127  | 74,732     | 72,127    | 72,127     | 72,127      | 72,127     | 72,128  | 72,901  |
| 13                    | Gardena/110 Corridor<br>Ind       | 20,659              | 24,580  | 24,591  | 25,180     | 24,590    | 24,599     | 24,590      | 24,573     | 24,611  | 24,591  |
| 14                    | Central LA Ind                    | 54,367              | 68,519  | 68,552  | 65,525     | 68,551    | 68,618     | 68,551      | 68,479     | 68,637  | 68,552  |
| 15                    | El<br>Segundo/Hawthorne<br>Ind    | 9,895               | 11,067  | 11,155  | 12,280     | 11,152    | 11,357     | 11,152      | 10,959     | 11,373  | 11,155  |

# Table 2.6Constrained Occupied Warehousing Space by Submarket Area, 2014 and 2040 by Alternate Scenario<br/>Thousands of Square Feet

|                       |                                    | 2014<br>Occupied    |         | 2040    | ) Occupied | Warehouse | Space by A | Alternate S | cenario Nu | mber    |         |
|-----------------------|------------------------------------|---------------------|---------|---------|------------|-----------|------------|-------------|------------|---------|---------|
| Submarke<br>t Area ID | Submarket Area                     | Warehous<br>e Space | Alt O   | Alt 1   | Alt 2      | Alt 3     | Alt 4      | Alt 5       | Alt 6      | Alt 7   | Alt 8   |
| 16                    | North Orange County<br>Ind         | 63,803              | 69,181  | 69,181  | 71,410     | 69,181    | 69,181     | 69,181      | 69,181     | 69,185  | 69,181  |
| 17                    | West Orange County<br>Ind          | 20,847              | 21,250  | 21,250  | 23,443     | 21,250    | 21,250     | 21,250      | 21,250     | 21,251  | 21,250  |
| 18                    | Riverside Ind                      | 72,430              | 121,786 | 121,767 | 124,535    | 121,850   | 121,767    | 121,880     | 121,711    | 121,685 | 170,728 |
| 19                    | North San Bernardino<br>County Ind | 11,208              | 38,143  | 38,065  | 28,187     | 38,120    | 38,065     | 38,113      | 38,053     | 38,078  | 38,029  |
| 20                    | Westside Ind                       | 8,335               | 8,461   | 8,461   | 9,952      | 8,461     | 8,461      | 8,461       | 8,461      | 8,461   | 8,461   |
| 21                    | SFV East Ind                       | 54,897              | 56,310  | 56,314  | 65,184     | 55,665    | 56,314     | 55,665      | 56,311     | 56,320  | 56,314  |
| 22                    | East LA Cnty Outlying<br>Ind       | 17                  | 22      | 22      | 22         | 22        | 22         | 22          | 22         | 22      | 22      |
| 23                    | Ventura County Ind                 | 25,676              | 31,285  | 31,589  | 29,991     | 31,561    | 31,595     | 27,029      | 31,381     | 31,847  | 31,590  |
| 24                    | Coachella Valley Ind               | 6,742               | 31,512  | 31,464  | 7,601      | 31,557    | 31,464     | 31,506      | 31,457     | 31,474  | 31,464  |
| 25                    | Corona Ind                         | 15,899              | 16,732  | 16,732  | 17,235     | 15,994    | 16,732     | 15,994      | 16,732     | 16,733  | 16,732  |
| 26                    | Northwest SGV Ind                  | 11,367              | 11,523  | 11,523  | 13,148     | 11,523    | 11,523     | 11,523      | 11,523     | 11,523  | 11,523  |
| 27                    | Orange County<br>Outlying Ind      | 240                 | 240     | 240     | 240        | 240       | 240        | 240         | 240        | 240     | 240     |
| 28                    | John Wayne Airport<br>Area Ind     | 35,994              | 36,518  | 36,518  | 42,846     | 36,518    | 36,518     | 36,518      | 36,518     | 36,519  | 36,518  |
| 29                    | Santa Clarita Valley<br>Ind        | 11,537              | 11,721  | 11,721  | 12,842     | 11,721    | 11,721     | 11,721      | 11,721     | 11,721  | 11,721  |
| 30                    | SFV West Ind                       | 20,516              | 24,480  | 24,480  | 24,273     | 22,781    | 24,480     | 20,593      | 24,480     | 24,481  | 24,480  |
| 31                    | South Orange County<br>Ind         | 14,323              | 18,266  | 18,372  | 14,917     | 14,743    | 18,375     | 14,743      | 18,283     | 18,483  | 18,372  |
| 32                    | South Riverside<br>County Ind      | 22,015              | 34,129  | 34,078  | 23,762     | 34,078    | 34,078     | 29,183      | 34,072     | 34,085  | 34,078  |

|                       |                                       | 2014<br>Occupied    |               | 2040      | ) Occupied    | Warehouse     | e Space by .  | Alternate S   | cenario Nu    | mber          |               |
|-----------------------|---------------------------------------|---------------------|---------------|-----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Submarke<br>t Area ID | Submarket Area                        | Warehous<br>e Space | Alt O         | Alt 1     | Alt 2         | Alt 3         | Alt 4         | Alt 5         | Alt 6         | Alt 7         | Alt 8         |
| 33                    | Upper SGV Ind                         | 15,988              | 16,078        | 16,078    | 18,255        | 16,078        | 16,078        | 16,078        | 16,078        | 16,078        | 16,078        |
| 34                    | Torrance/Beach Cities<br>Ind          | 22,402              | 24,225        | 24,260    | 25,410        | 22,780        | 24,260        | 22,780        | 24,230        | 24,297        | 24,260        |
| 35                    | San Bernardino<br>County Outlying Ind | 106                 | 115           | 115       | 127           | 115           | 115           | 115           | 115           | 115           | 115           |
| 36                    | Riverside County<br>Outlying Ind      | 112                 | 112           | 112       | 119           | 112           | 112           | 112           | 112           | 112           | 112           |
| 37                    | Conejo Valley Ind                     | 9,209               | 11,737        | 11,737    | 10,722        | 9,579         | 11,737        | 9,579         | 11,737        | 11,738        | 11,737        |
| 38                    | NE LA Cnty Outlying<br>Ind            | 0                   | 0             | 0         | 0             | 0             | 0             | 0             | 0             | 0             | 0             |
| 39                    | Antelope Valley Ind                   | 5,166               | 46,970        | 46,942    | 47,081        | 46,841        | 46,942        | 46,839        | 46,894        | 46,994        | 46,834        |
| 40                    | NW LA Cnty Outlying<br>Ind            | 0                   | 0             | 0         | 0             | 0             | 0             | 0             | 0             | 0             | 0             |
| 41                    | Ventura Cnty Outlying<br>Ind          | 0                   | 0             | 0         | 0             | 0             | 0             | 0             | 0             | 0             | 0             |
| 42                    | Imperial County Ind                   | 1,540               | 15,889        | 15,095    | 9,450         | 14,326        | 14,754        | 14,323        | 10,331        | 20,091        | 15,079        |
| 43                    | Catalina Island Ind                   | 2                   | 2             | 2         | 3             | 2             | 2             | 2             | 2             | 2             | 2             |
| Total                 |                                       | 1,134,435           | 1,514,09<br>1 | 1,513,711 | 1,546,5<br>57 | 1,502,9<br>26 | 1,513,71<br>0 | 1,491,26<br>6 | 1,507,9<br>63 | 1,519,55<br>9 | 1,563,2<br>86 |

Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Note: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

## 2.2 TRAVEL IMPACTS AND AIR QUALITY IMPACTS ASSESSMENT

The SCAG region's truck trips and associated VMT for this study were calculated based on the total warehouse space inventory from the CoStar® Property data November 2014 downloaded data and the forecasts produced by the warehouse space forecasting model. As described in Section 1.4 of this report, truck trip generations were calculated based on RDC- and non-RDC-related truck trip generation rates; rough estimates of submarket area's average distances to port and border crossing; and assumed an average travel mileage of 50 miles for trips relating to domestic market.<sup>13</sup> The VMT for warehouse-related truck trips generated at a submarket area are not restricted within the submarket area. The submarket area level truck VMT related to warehouses was added to generate the regional total truck VMT related to warehouses in the SCAG region.

The estimated regional total truck VMT related to warehouses was then distributed into speed bins using the 2012 SCAG Regional Transportation Plan's (RTP) base year (2012) and future year (2035) model run results for regional total truck VMT for all purposes by speed bin. The 2016 SCAG RTP would update the regional total truck VMT by speed bin distribution, but the information is not available at this time.

Also, as described in Section 1.4, the emission factors for the SCAG region were calculated using emission factors projections for 2014-2040 from the on-line EMFAC tool<sup>14</sup> for the SCAG region at five-year intervals, by speed bin, by air pollutant, and by truck vehicle category. The results were aggregated to trucks and interpolated linearly between the five-year intervals, providing daily tons of emissions by air pollutant type.

However, the above impacts calculations DO NOT CAPTURE the full complexity of the scenario definitions at this time due to limitations that exist in the SCAG's Regional Travel Demand Model. For example, both crossdock transload facility and import warehouse are treated as non-RDCs within the structure of the SCAG TDM – their trip generation rates are the same. The truck VMT estimates are still usable as percentage of warehouse space relating to crossdock transload facility is very small (around 1 percent of the total warehouse space), the error in VMT estimates by generalizing to non-RDC is small compared to total truck VMT.

Till further improvements are made to SCAG's TDM model, particularly adjusting the total warehouse space by transportation analysis zone (TAZ), expanding trip generation rates to more detailed warehouse types, and establishing truck trip length distributions for domestic cargo market based on Cal-VIUS or similar studies to make them more submarket area specific similar to the port- and border-crossing-related distance estimates, there will be some limitations of the impacts calculations. As such, the current results should serve as preliminary.

More importantly, interpretations based on this study's travel and air quality impact estimates should be recognized not as strong as those made based on the warehouse space forecasts.

<sup>&</sup>lt;sup>13</sup> 50 miles for domestic market is an arbitrary test value. To calibrate more refined average trip length, TDM related or California Vehicle Inventory and Use Survey (Cal-VIUS) study should be used in the future.

<sup>&</sup>lt;sup>14</sup> http://www.dot.ca.gov/hq/env/air/pages/emfac.htm (last accessed on June 30, 2016).

## Alternate Scenarios Comparison of Occupied Warehouse Space-Related Truck Trips and Truck VMT Impacts by Cargo Market Type

Table 2.7 shows alternate scenarios comparison of constrained occupied warehouse space-related truck trips generated by cargo market type, while Table 2.8 shows the truck VMT associated with them.

This indicates that under the baseline scenario, warehousing-related truck trips in the SCAG region are expected to grow from 1.08 million trucks per day to 1.43 million trucks per day, which is by 33 percent or 1.1 percent annually, while warehousing-related truck VMT in the SCAG region is expected to grow from 52.7 million trucks per day to 68.1 million trucks per day, which is by 29 percent or 1.0 percent annually.

Under alternate scenarios:

- Alt 4 (increased crossdock transloading) scenario results in the lowest port-related truck trips and truck VMT due to the lowering warehouse space needed for storage. Alt 6, on the other hand, increases port-related truck trips and truck VMT.
- Alt 6 also results in the lowest border-crossing-related truck trips and truck VMT, while Alt 7 results in the highest border-crossing-related truck trips and truck VMT.
- Alt 8 results in the highest domestic truck trips and truck VMT, while Alt 5 results in the lowest domestic truck trips and truck VMT.

# Table 2.7Constrained Occupied Warehousing Space-Related Daily Truck Trips Generated by Cargo Market Type,<br/>2014 and 2040 by Alternate Scenario<br/>Thousands

|                            | 2014 Occupied<br>Warehouse<br>Space-Related |       | 2040 Occupied Warehouse Space-Related Truck Trips by Cargo Market Type<br>by Alternate Scenario Number |       |       |       |       |       |       |       |  |  |
|----------------------------|---------------------------------------------|-------|--------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| Cargo Market Type          | Truck Trips by<br>Cargo Market<br>Type      | Alt O | Alt 1                                                                                                  | Alt 2 | Alt 3 | Alt 4 | Alt 5 | Alt 6 | Alt 7 | Alt 8 |  |  |
| Port Related               | 121                                         | 232   | 220                                                                                                    | 214   | 203   | 188   | 202   | 225   | 213   | 220   |  |  |
| Border-Crossing<br>Related | 15                                          | 33    | 32                                                                                                     | 32    | 32    | 32    | 32    | 26    | 40    | 32    |  |  |
| Domestic                   | 948                                         | 1,171 | 1,195                                                                                                  | 1,236 | 1,161 | 1,224 | 1,155 | 1,190 | 1,200 | 1,243 |  |  |
| Total                      | 1,084                                       | 1,436 | 1,447                                                                                                  | 1,481 | 1,395 | 1,444 | 1,389 | 1,441 | 1,452 | 1,495 |  |  |

Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Note: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

# Southern California Association of Governments Industrial Warehousing Study

# Table 2.8Constrained Occupied Warehousing Space-Related Daily Truck VMT for Truck Trips Generated by CargoMarket Type, 2014 and 2040 by Alternate ScenarioThousands

|                            | 2014 Occupied<br>Warehouse Space-<br>Related Truck VMT |        | 2040 Occupied Warehouse Space-Related Truck VMT by Cargo Market Type by Alternate Scenario Number |        |        |        |        |        |        |        |  |  |  |
|----------------------------|--------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
| Cargo Market Type          | by Cargo Market<br>Type                                | Alt O  | Alt 1                                                                                             | Alt 2  | Alt 3  | Alt 4  | Alt 5  | Alt 6  | Alt 7  | Alt 8  |  |  |  |
| Port Related               | 3,698                                                  | 7,204  | 6,695                                                                                             | 6,129  | 6,168  | 5,580  | 6,124  | 7,017  | 6,343  | 6,582  |  |  |  |
| Border-Crossing<br>Related | 1,610                                                  | 2,343  | 2,399                                                                                             | 2,918  | 2,421  | 2,436  | 2,418  | 2,116  | 2,790  | 2,397  |  |  |  |
| Domestic                   | 47,396                                                 | 58,567 | 59,753                                                                                            | 61,776 | 58,031 | 61,177 | 57,742 | 59,479 | 59,981 | 62,163 |  |  |  |
| Total                      | 52,705                                                 | 68,114 | 68,847                                                                                            | 70,822 | 66,619 | 69,193 | 66,283 | 68,612 | 69,115 | 71,142 |  |  |  |

Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Note: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

Figures 2.4 and 2.5 show the distributions of warehousing-related truck trips and truck VMT for the SCAG region by cargo market type under the baseline scenario.

Although port-related truck trips make up 11 percent of the total truck trips in 2014, they form a smaller share of 7 percent of the total truck VMT. On the other hand, the truck VMT associated with border-crossing and domestic demand for warehouse space has a lower share of total truck trips but higher share of total truck VMT.

Truck trips for all cargo market types will grow between 2014 and 2040 baseline scenario (see Table 2.7). As shown in Figure 2.4, the port-related truck trips will increase from 11 percent to 16 percent, and the border crossing truck trips will increase from 1 percent to 2 percent, while the domestic truck trips will decrease from 88 percent to 82 percent.

Truck VMT for all cargo market types will grow between 2014 and 2040 baseline scenario (see Table 2.8). As shown in Figure 2.5, the port-related truck VMT will increase from 7 percent to 11 percent, the border-crossing truck VMT will remain about the same (3 percent both in 2014 and 2040), while the domestic truck VMT will decrease from 90 percent to 86 percent.

Although the magnitudes may differ slightly, the direction of share changes between 2014 and 2040 in the pie charts are similar under the alternate scenarios.

## Figure 2.4 Regional Occupied Warehousing Space-Related Daily Truck Trips Distribution by Cargo Market Type under Baseline Scenario, 2014 and 2040 Constrained



Source: SCAG Warehousing Space Forecasting Model, Draft Version 1.0, June 30, 2016.

## Figure 2.5 Regional Occupied Warehousing Space-Related Daily Truck VMT Distribution by Cargo Market Type under Baseline Scenario, 2014 and 2040 Constrained



Source: SCAG Warehousing Space Forecasting Model, Draft Version 1.0, June 30, 2016.

## Alternate Scenarios Comparison of Occupied Warehouse Space-Related Truck Trips and Truck VMT Impacts by Submarket Area

Table 2.9 shows the alternate scenarios comparison of constrained occupied warehouse space-related truck trips by submarket area, while Table 2.10 shows the comparison in terms of truck VMT. In comparison to the baseline scenario, Alt 3 and Alt 5 result in reduction in total truck trips and truck VMT, with the most benefits going to Ontario Airport Ind area and Riverside Ind area. All other scenarios result in an increase in total truck trips and truck VMT. The highest increase in truck trips of 59,000 trucks per day and truck VMT of 3.0 million truck miles per day are seen under Alt 8. Alt 2 is estimated to have the second largest increase in truck trips of 46,000 trucks per day and truck VMT of 2.7 million truck miles per day, the submarket areas near the port will see a rise in truck trips, while the submarket areas away from ports will see a decline in truck VMT. This is due to the geographical distribution of older and functionally obsolete buildings. Alt 6 and Alt 7 have very little impact on the truck trips and truck miles. Increasing crossdock transloading (Alt 4) has the highest impact on miles per truck basis.
# Table 2.9Constrained Occupied Warehousing Space-Related Daily Truck Trips Generated by Submarket Area,<br/>2014 and 2040 by Alternate Scenario<br/>Thousands

|                      |                                    | 2014<br>Occupied<br>Warehouse                               | 2040 Occupied Warehouse Space-Related Truck Trips by Cargo Market Type by Alternate Scenario Number |       |       |       |       |       |       |       |       |
|----------------------|------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Submarket<br>Area ID | Submarket Area                     | Space-<br>Related Truck<br>Trips<br>by Cargo<br>Market Type | Alt O                                                                                               | Alt 1 | Alt 2 | Alt 3 | Alt 4 | Alt 5 | Alt 6 | Alt 7 | Alt 8 |
| 1                    | Long Beach Area Ind                | 16                                                          | 24                                                                                                  | 24    | 27    | 24    | 24    | 24    | 24    | 24    | 24    |
| 2                    | Carson/Rancho Domingz Ind          | 55                                                          | 65                                                                                                  | 65    | 75    | 64    | 65    | 64    | 65    | 64    | 65    |
| 3                    | Lynwood/Paramount Ind              | 8                                                           | 8                                                                                                   | 8     | 9     | 8     | 8     | 8     | 8     | 8     | 8     |
| 4                    | Mid Counties-LA Ind                | 56                                                          | 61                                                                                                  | 61    | 67    | 61    | 61    | 61    | 61    | 61    | 61    |
| 5                    | Vernon Area Ind                    | 49                                                          | 62                                                                                                  | 62    | 61    | 62    | 62    | 62    | 62    | 62    | 62    |
| 6                    | Commerce Area Ind                  | 50                                                          | 53                                                                                                  | 53    | 62    | 53    | 53    | 53    | 53    | 53    | 53    |
| 7                    | Southwest SGV Ind                  | 7                                                           | 7                                                                                                   | 7     | 8     | 7     | 7     | 7     | 7     | 7     | 7     |
| 8                    | Lower SGV Ind                      | 61                                                          | 88                                                                                                  | 88    | 93    | 88    | 88    | 88    | 88    | 88    | 88    |
| 9                    | Eastern SGV Ind                    | 19                                                          | 19                                                                                                  | 19    | 21    | 19    | 19    | 19    | 19    | 19    | 19    |
| 10                   | West San Bernardino County Ind     | 39                                                          | 42                                                                                                  | 42    | 44    | 42    | 42    | 42    | 42    | 42    | 42    |
| 11                   | Ontario Airport Area Ind           | 145                                                         | 235                                                                                                 | 235   | 242   | 218   | 235   | 218   | 235   | 235   | 235   |
| 12                   | East San Bernardino County Ind     | 53                                                          | 54                                                                                                  | 54    | 56    | 54    | 54    | 54    | 54    | 54    | 55    |
| 13                   | Gardena/110 Corridor Ind           | 21                                                          | 25                                                                                                  | 25    | 26    | 25    | 25    | 25    | 25    | 25    | 25    |
| 14                   | Central LA Ind                     | 56                                                          | 71                                                                                                  | 71    | 67    | 71    | 71    | 71    | 71    | 71    | 71    |
| 15                   | El Segundo/Hawthorne Ind           | 10                                                          | 11                                                                                                  | 12    | 13    | 11    | 11    | 11    | 11    | 12    | 12    |
| 16                   | North Orange County Ind            | 64                                                          | 69                                                                                                  | 70    | 71    | 70    | 70    | 70    | 70    | 70    | 70    |
| 17                   | West Orange County Ind             | 21                                                          | 21                                                                                                  | 21    | 23    | 21    | 21    | 21    | 21    | 21    | 21    |
| 18                   | Riverside Ind                      | 61                                                          | 103                                                                                                 | 105   | 114   | 92    | 105   | 94    | 104   | 105   | 147   |
| 19                   | North San Bernardino County<br>Ind | 10                                                          | 34                                                                                                  | 35    | 28    | 32    | 35    | 33    | 35    | 35    | 37    |
| 20                   | Westside Ind                       | 9                                                           | 9                                                                                                   | 9     | 10    | 9     | 9     | 9     | 9     | 9     | 9     |

|                      |                                       | 2014<br>Occupied<br>Warehouse                               | 2040  | 2040 Occupied Warehouse Space-Related Truck Trips by Cargo Market Type by Alternate Scenario Number |       |       |       |       |       |       |       |
|----------------------|---------------------------------------|-------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Submarket<br>Area ID | Submarket Area                        | Space-<br>Related Truck<br>Trips<br>by Cargo<br>Market Type | Alt O | Alt 1                                                                                               | Alt 2 | Alt 3 | Alt 4 | Alt 5 | Alt 6 | Alt 7 | Alt 8 |
| 21                   | SFV East Ind                          | 57                                                          | 58    | 58                                                                                                  | 64    | 57    | 57    | 57    | 58    | 58    | 58    |
| 22                   | East LA Cnty Outlying Ind             | 0                                                           | 0     | 0                                                                                                   | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 23                   | Ventura County Ind                    | 26                                                          | 32    | 33                                                                                                  | 31    | 33    | 31    | 28    | 31    | 33    | 33    |
| 24                   | Coachella Valley Ind                  | 7                                                           | 28    | 32                                                                                                  | 8     | 27    | 32    | 28    | 32    | 32    | 31    |
| 25                   | Corona Ind                            | 16                                                          | 17    | 17                                                                                                  | 18    | 16    | 17    | 16    | 17    | 17    | 17    |
| 26                   | Northwest SGV Ind                     | 11                                                          | 12    | 12                                                                                                  | 13    | 12    | 12    | 12    | 12    | 12    | 12    |
| 27                   | Orange County Outlying Ind            | 0                                                           | 0     | 0                                                                                                   | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 28                   | John Wayne Airport Area Ind           | 37                                                          | 38    | 38                                                                                                  | 45    | 38    | 38    | 38    | 38    | 38    | 38    |
| 29                   | Santa Clarita Valley Ind              | 11                                                          | 12    | 12                                                                                                  | 13    | 11    | 12    | 11    | 12    | 12    | 12    |
| 30                   | SFV West Ind                          | 21                                                          | 25    | 25                                                                                                  | 25    | 23    | 25    | 21    | 25    | 25    | 25    |
| 31                   | South Orange County Ind               | 14                                                          | 18    | 18                                                                                                  | 15    | 15    | 18    | 15    | 18    | 19    | 17    |
| 32                   | South Riverside County Ind            | 19                                                          | 29    | 31                                                                                                  | 20    | 29    | 31    | 27    | 32    | 31    | 31    |
| 33                   | Upper SGV Ind                         | 17                                                          | 17    | 17                                                                                                  | 19    | 17    | 17    | 17    | 17    | 17    | 17    |
| 34                   | Torrance/Beach Cities Ind             | 21                                                          | 22    | 23                                                                                                  | 24    | 21    | 23    | 21    | 23    | 22    | 23    |
| 35                   | San Bernardino County Outlying<br>Ind | 0                                                           | 0     | 0                                                                                                   | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 36                   | Riverside County Outlying Ind         | 0                                                           | 0     | 0                                                                                                   | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 37                   | Conejo Valley Ind                     | 9                                                           | 12    | 12                                                                                                  | 11    | 10    | 11    | 10    | 12    | 11    | 12    |
| 38                   | NE LA Cnty Outlying Ind               | 0                                                           | 0     | 0                                                                                                   | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 39                   | Antelope Valley Ind                   | 5                                                           | 39    | 40                                                                                                  | 50    | 40    | 40    | 40    | 40    | 41    | 45    |
| 40                   | NW LA Cnty Outlying Ind               | 0                                                           | 0     | 0                                                                                                   | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 41                   | Ventura Cnty Outlying Ind             | 0                                                           | 0     | 0                                                                                                   | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 42                   | Imperial County Ind                   | 1                                                           | 17    | 16                                                                                                  | 10    | 15    | 16    | 15    | 11    | 21    | 16    |
| 43                   | Catalina Island Ind                   | 0                                                           | 0     | 0                                                                                                   | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Total                |                                       | 1,084                                                       | 1,436 | 1,447                                                                                               | 1,481 | 1,395 | 1,444 | 1,389 | 1,441 | 1,452 | 1,495 |

#### Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Note: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

# Table 2.10Constrained Occupied Warehousing Space-Related Daily Truck VMT for Truck Trips Generated by<br/>Submarket Area, 2014 and 2040 by Alternate Scenario<br/>Thousands

|                      |                                 | 2014<br>Occupied<br>Warehouse<br>Space-         | 2040 Occupied Warehouse Space-Related Truck VMT by Cargo Market Type by Alternate Scenario Number |        |        |        |        |        |        |        |        |
|----------------------|---------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Submarket<br>Area ID | Submarket Area                  | Related Truck<br>VMT<br>by Cargo<br>Market Type | Alt O                                                                                             | Alt 1  | Alt 2  | Alt 3  | Alt 4  | Alt 5  | Alt 6  | Alt 7  | Alt 8  |
| 1                    | Long Beach Area Ind             | 440                                             | 772                                                                                               | 763    | 853    | 1,164  | 1,062  | 1,164  | 715    | 799    | 763    |
| 2                    | Carson/Rancho Domingz Ind       | 2,171                                           | 2,470                                                                                             | 2,470  | 2,941  | 2,491  | 2,474  | 2,490  | 2,446  | 2,583  | 2,470  |
| 3                    | Lynwood/Paramount Ind           | 464                                             | 464                                                                                               | 464    | 523    | 464    | 464    | 464    | 466    | 462    | 464    |
| 4                    | Mid Counties-LA Ind             | 2,615                                           | 2,719                                                                                             | 2,719  | 2,927  | 2,719  | 2,719  | 2,719  | 2,719  | 2,719  | 2,719  |
| 5                    | Vernon Area Ind                 | 2,315                                           | 2,636                                                                                             | 2,638  | 2,645  | 2,640  | 2,640  | 2,640  | 2,635  | 2,643  | 2,638  |
| 6                    | Commerce Area Ind               | 2,352                                           | 2,422                                                                                             | 2,422  | 2,753  | 2,422  | 2,422  | 2,422  | 2,422  | 2,422  | 2,422  |
| 7                    | Southwest SGV Ind               | 311                                             | 311                                                                                               | 311    | 352    | 311    | 311    | 311    | 311    | 311    | 311    |
| 8                    | Lower SGV Ind                   | 2,859                                           | 3,534                                                                                             | 3,554  | 4,394  | 3,554  | 3,554  | 3,554  | 3,554  | 3,553  | 3,554  |
| 9                    | Eastern SGV Ind                 | 931                                             | 939                                                                                               | 939    | 1,074  | 939    | 939    | 939    | 939    | 939    | 939    |
| 10                   | West San Bernardino County Ind  | 1,976                                           | 2,104                                                                                             | 2,104  | 2,185  | 2,104  | 2,104  | 2,104  | 2,104  | 2,104  | 2,104  |
| 11                   | Ontario Airport Area Ind        | 7,287                                           | 11,788                                                                                            | 11,812 | 12,166 | 10,968 | 11,812 | 10,970 | 11,802 | 11,809 | 11,812 |
| 12                   | East San Bernardino County Ind  | 2,737                                           | 2,820                                                                                             | 2,814  | 2,856  | 2,827  | 2,814  | 2,827  | 2,812  | 2,816  | 2,876  |
| 13                   | Gardena/110 Corridor Ind        | 980                                             | 1,104                                                                                             | 1,105  | 1,166  | 1,105  | 1,106  | 1,105  | 1,103  | 1,108  | 1,105  |
| 14                   | Central LA Ind                  | 2,635                                           | 3,029                                                                                             | 3,034  | 2,972  | 3,034  | 3,235  | 3,034  | 3,024  | 3,045  | 3,034  |
| 15                   | El Segundo/Hawthorne Ind        | 593                                             | 672                                                                                               | 684    | 771    | 678    | 711    | 678    | 657    | 713    | 684    |
| 16                   | North Orange County Ind         | 2,987                                           | 3,121                                                                                             | 3,128  | 3,195  | 3,128  | 3,235  | 3,128  | 3,129  | 3,128  | 3,128  |
| 17                   | West Orange County Ind          | 1,032                                           | 1,044                                                                                             | 1,044  | 1,125  | 1,044  | 1,044  | 1,044  | 1,044  | 1,044  | 1,044  |
| 18                   | Riverside Ind                   | 3,068                                           | 5,146                                                                                             | 5,239  | 5,711  | 4,638  | 5,239  | 4,698  | 5,234  | 5,239  | 7,380  |
| 19                   | North San Bernardino County Ind | 504                                             | 1,736                                                                                             | 1,947  | 1,411  | 1,632  | 1,781  | 1,662  | 2,039  | 1,871  | 1,907  |
| 20                   | Westside Ind                    | 513                                             | 523                                                                                               | 523    | 607    | 523    | 523    | 523    | 521    | 526    | 523    |
| 21                   | SFV East Ind                    | 2,825                                           | 2,854                                                                                             | 2,872  | 3,095  | 2,837  | 2,855  | 2,837  | 2,871  | 2,872  | 2,872  |

|                      |                                       | 2014<br>Occupied<br>Warehouse                             | 2040 Occupied Warehouse Space-Related Truck VMT by Cargo Market Type by Alternate Scenario Number |            |            |            |            |            |            |        | et Type |
|----------------------|---------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|--------|---------|
| Submarket<br>Area ID | Submarket Area                        | Space-<br>Related Truck<br>VMT<br>by Cargo<br>Market Type | Alt O                                                                                             | Alt 1      | Alt 2      | Alt 3      | Alt 4      | Alt 5      | Alt 6      | Alt 7  | Alt 8   |
| 22                   | East LA Cnty Outlying Ind             | 1                                                         | 1                                                                                                 | 1          | 1          | 1          | 1          | 1          | 1          | 1      | 1       |
| 23                   | Ventura County Ind                    | 1,414                                                     | 1,764                                                                                             | 1,821      | 1,747      | 1,818      | 1,759      | 1,576      | 1,706      | 1,876  | 1,824   |
| 24                   | Coachella Valley Ind                  | 348                                                       | 1,551                                                                                             | 1,595      | 396        | 1,361      | 1,585      | 1,414      | 1,588      | 1,602  | 1,568   |
| 25                   | Corona Ind                            | 818                                                       | 862                                                                                               | 862        | 889        | 823        | 862        | 823        | 862        | 861    | 862     |
| 26                   | Northwest SGV Ind                     | 570                                                       | 574                                                                                               | 574        | 617        | 574        | 574        | 574        | 574        | 574    | 574     |
| 27                   | Orange County Outlying Ind            | 13                                                        | 13                                                                                                | 13         | 13         | 13         | 13         | 13         | 13         | 13     | 13      |
| 28                   | John Wayne Airport Area Ind           | 2,087                                                     | 2,115                                                                                             | 2,115      | 2,477      | 2,127      | 2,115      | 2,127      | 2,114      | 2,115  | 2,115   |
| 29                   | Santa Clarita Valley Ind              | 566                                                       | 576                                                                                               | 576        | 632        | 571        | 576        | 571        | 576        | 576    | 576     |
| 30                   | SFV West Ind                          | 1,045                                                     | 1,153                                                                                             | 1,257      | 1,190      | 1,164      | 1,257      | 1,047      | 1,257      | 1,257  | 1,256   |
| 31                   | South Orange County Ind               | 715                                                       | 922                                                                                               | 940        | 757        | 746        | 940        | 746        | 932        | 949    | 858     |
| 32                   | South Riverside County Ind            | 956                                                       | 1,439                                                                                             | 1,531      | 1,008      | 1,453      | 1,539      | 1,340      | 1,601      | 1,533  | 1,547   |
| 33                   | Upper SGV Ind                         | 830                                                       | 835                                                                                               | 835        | 951        | 835        | 835        | 835        | 835        | 835    | 835     |
| 34                   | Torrance/Beach Cities Ind             | 975                                                       | 1,067                                                                                             | 1,082      | 1,108      | 997        | 1,082      | 997        | 1,078      | 1,050  | 1,082   |
| 35                   | San Bernardino County Outlying<br>Ind | 6                                                         | 7                                                                                                 | 7          | 8          | 7          | 7          | 7          | 7          | 7      | 7       |
| 36                   | Riverside County Outlying Ind         | 6                                                         | 6                                                                                                 | 6          | 7          | 6          | 6          | 6          | 6          | 6      | 6       |
| 37                   | Conejo Valley Ind                     | 464                                                       | 599                                                                                               | 599        | 545        | 484        | 558        | 484        | 599        | 567    | 599     |
| 38                   | NE LA Cnty Outlying Ind               | 0                                                         | 0                                                                                                 | 0          | 0          | 0          | 0          | 0          | 0          | 0      | 0       |
| 39                   | Antelope Valley Ind                   | 249                                                       | 1,985                                                                                             | 2,032      | 2,488      | 2,022      | 2,032      | 2,013      | 2,026      | 2,037  | 2,254   |
| 40                   | NW LA Cnty Outlying Ind               | 0                                                         | 0                                                                                                 | 0          | 0          | 0          | 0          | 0          | 0          | 0      | 0       |
| 41                   | Ventura Cnty Outlying Ind             | 0                                                         | 0                                                                                                 | 0          | 0          | 0          | 0          | 0          | 0          | 0      | 0       |
| 42                   | Imperial County Ind                   | 47                                                        | 438                                                                                               | 418        | 269        | 398        | 409        | 398        | 292        | 552    | 418     |
| 43                   | Catalina Island Ind                   | 0                                                         | 0                                                                                                 | 0          | 0          | 0          | 0          | 0          | 0          | 0      | 0       |
| Total                |                                       | 52,705                                                    | 68,114                                                                                            | 68,84<br>7 | 70,82<br>2 | 66,61<br>9 | 69,19<br>3 | 66,28<br>3 | 68,61<br>2 | 69,115 | 71,142  |

#### Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Note: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

# Alternate Scenarios Comparison of Regional Occupied Warehouse Space-Related Air Quality Impacts

Table 2.11 shows the regional occupied warehouse space-related estimates of daily emissions by air pollutant type in 2014 and 2040 by alternate scenario. Except for carbon dioxide emissions, there is not much distinction between the alternate scenarios. Although the regional truck trips increase by 33 percent and truck VMT increase by 29 percent between 2014 and 2040 under the baseline scenario and travel speeds would be lowered, the emissions reduce due to implementation of state air quality policy, truck emission reduction measures and truck-related regulations. The results are as follows: 1) ROG reduces by 72 percent; 2) TOG reduces by 65 percent; 3) CO reduces by 66 percent; 4) NO<sub>x</sub> reduces by 87 percent; 5) CO<sub>2</sub> increases by 27 percent; and 6) PM<sub>10</sub> and PM<sub>2.5</sub> reduce by 92 percent each.

| Scenario |                    | 2014      | 2040 Emissions |        |        |        |            |        |        |        |        |
|----------|--------------------|-----------|----------------|--------|--------|--------|------------|--------|--------|--------|--------|
| Number   | Air Pollutant Type | Emissions | Alt O          | Alt 1  | Alt 2  | Alt 3  | Alt 4      | Alt 5  | Alt 6  | Alt 7  | Alt 8  |
| 1        | ROG                | 9.2       | 2.6            | 2.6    | 2.7    | 2.5    | 2.6        | 2.5    | 2.6    | 2.6    | 2.7    |
| 2        | TOG                | 11.4      | 4.0            | 4.0    | 4.2    | 3.9    | 4.1        | 3.9    | 4.0    | 4.1    | 4.2    |
| 3        | CO                 | 75        | 25             | 25     | 26     | 25     | 26         | 25     | 25     | 26     | 26     |
| 4        | NO <sub>x</sub>    | 278       | 35             | 35     | 36     | 34     | 35         | 34     | 35     | 35     | 36     |
| 5        | CO2                | 71,367    | 90,60<br>9     | 91,585 | 94,212 | 88,621 | 92,04<br>4 | 88,174 | 91,271 | 91,940 | 94,637 |
| 6        | PM10               | 4.08      | 0.34           | 0.35   | 0.36   | 0.33   | 0.35       | 0.33   | 0.34   | 0.35   | 0.36   |
| 7        | PM <sub>2.5</sub>  | 3.90      | 0.33           | 0.33   | 0.34   | 0.32   | 0.33       | 0.32   | 0.33   | 0.33   | 0.34   |

# Table 2.11Constrained Occupied Warehousing Space-Related Regional Total Emissions Due to Truck Trips in Tons<br/>per Day by Air Pollutant Type, 2014 and 2040 by Alternate Scenario

Source: SCAG Warehouse Space Forecasting Model, Version 1.0, developed in June 30, 2016.

Notes: The Alternate Scenario are as follows: Alt 0: Baseline Scenario; Alt 1: Baseline Scenario plus Efficiency Gain; Alt 2: Baseline Scenario plus Efficiency Gain plus Replacement of Obsolete Buildings; Alt 3: Baseline Scenario plus Efficiency Gain plus Increased Mega RDCs Share; Alt 4: Baseline Scenario plus Efficiency Gain plus Increased Crossdock Transloading Share; Alt 5: Baseline Scenario plus Efficiency Gain plus Increased E-commerce and Fulfillment Centers Share; Alt 6: Baseline Scenario plus Efficiency Gain plus Lower Border Crossing Growth Scenario; Alt 7: Baseline Scenario plus Efficiency Gain plus Higher Border Crossing Growth Scenario; and Alt 8: Baseline Scenario plus Efficiency Gain plus Increased Developable Space.

 $ROG = Reactive Organic Gases; TOG = Total Organic Gases; CO = Carbon monoxide; NO_x = Oxides of Nitrogen; CO_2 = Carbon-dioxide; PM_{10} = Particular Matter with a diameter of 10 micrometers or less; and PM_{2.5} = Particular Matter with a diameter of 2.5 micrometers or less.$ 

# 2.3 FINDINGS, AND POLICY AND DECISION-MAKING IMPLICATIONS

# Findings

The analysis of the model results indicate that, in the future, the biggest gains in warehouse square footage will be derived through replacing obsolete buildings with more efficient facilities, and through construction of new warehouses and RDCs on currently undeveloped land. These are the only two options for appreciably increasing the overall supply of warehousing capacity in the region. However, beyond the forecast year of 2040, it is unknown whether the region would be able to continue accommodating warehousing space demand even with an increase in efficiencies and construction of new facilities.

Gains in warehouse operating efficiencies are important for improving productivity in the goods movement industry, and they will have the effect of reducing unconstrained demand in the region. However, these improvements in efficiencies and productivity will not be enough to avoid shortfalls in supply versus demand.

Some industry trends, alternate freight forecasts, and regional and local policies may serve as demand management strategies, which can further reduce the warehouse space needed in the future.

Under all future scenarios, the SCAG region will face challenging situations, including, but not limited to, the following:

- 1. Potential risks of running out of vacant space to accommodate growth in warehousing space demand;
- 2. Balancing economic, social, and environmental objectives when approving development proposals for industrial lands and redevelopment proposals to upgrade existing facilities;
- 3. Addressing traffic impacts associated with increased amount of logistics facilities and regional transportation system capacity to handle the increased truck volume;
- 4. Preservation of existing industrial parcels and vacant parcels designated for warehousing purposes; and
- 5. Potentially changing land use designation to increase developable space for warehousing.

This study showed that demand for warehousing will likely outpace supply under six out of the nine scenarios (including the baseline scenario) over the planning horizon up to the year 2040, which could have an impact on the SCAG region's ability to accommodate logistics activities and its economic competiveness. Shortages in supply could start to appear as early as 2029, and depend on the scenario. Even under the scenarios without a supply shortfall by 2040, significant private investment into new construction and operational improvements would be needed, and significant approval and permitting would be needed from the cities and counties. By 2040, the region overall would have an increase in truck VMT, although air quality impacts would reduce as a result of less polluting truck fleet in the future.

# Policy and Decision-Making Implications

The policy and decision-making implications of the model results to various public and private stakeholders are shown in Table 2.12 below.

This page left intentionally blank

| Alternate<br>Number | Alternate<br>Scenario Name                                                             | SCAG Region                                                                                                                                                                                                                                                                                                                                                                                                                   | Local Governments                                                                                                                                                                                                                                                                      | Beneficial Cargo Owners (BCO)                                                                      | Real Estate Developers                                                                                             | Warehouse Operators                                                                    |
|---------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| )                   | Baseline Scenario                                                                      | <ul> <li>A shortfall of 295 million SF of warehouse space is<br/>expected by 2040 under warehouse space<br/>forecasting model assumptions. This is the worst<br/>case scenario.</li> </ul>                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                    | N/A                                                                                                | N/A                                                                                                                | N/A                                                                                    |
|                     |                                                                                        | <ul> <li>Approximately 33% increase in truck trips and 29%<br/>increase in truck VMT over 2014 level under<br/>warehouse space forecasting model assumptions,<br/>however, substantial drop in truck emissions.</li> </ul>                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                        |                                                                                                    |                                                                                                                    |                                                                                        |
|                     | Baseline Scenario plus<br>Efficiency Gain                                              | <ul> <li>Efficiency improvements for new developments<br/>would increase regional economic competitiveness<br/>(see efficiency gains in Table 1.3).</li> </ul>                                                                                                                                                                                                                                                                | • In areas where new buildings are constructed, greater efficiencies imply more cargo handled per square foot of space consumed.                                                                                                                                                       | • BCOs would benefit from greater<br>productivity in the new buildings<br>meeting their physical   | <ul> <li>There would be investment<br/>opportunities for developers to<br/>construct new buildings with</li> </ul> | Warehouse operators would<br>attract more customers to new<br>developments with modern |
|                     |                                                                                        | <ul> <li>A shortfall of 126 million square feet of warehouse<br/>space is expected by 2040 under warehouse space<br/>forecasting model assumptions.</li> </ul>                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        | configuration and operational<br>characteristics requirements,<br>and resulting in better customer | modern design features and services in submarket areas with developable space.                                     | building features and services.                                                        |
|                     |                                                                                        | <ul> <li>Approximately 34% increase in truck trips and 31%<br/>increase in truck VMT over 2014 level, however,<br/>substantial drop in truck emissions under warehouse<br/>space forecasting model assumptions.</li> </ul>                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                        | service.                                                                                           |                                                                                                                    |                                                                                        |
|                     | Baseline Scenario plus<br>Efficiency Gain plus<br>Replacement of Obsolete<br>Buildings | <ul> <li>regional economic competitiveness</li> <li>Efficiency improvements for replaced obsolete facilities would increase regional economic competitiveness (see efficiency gains in Table 1.3).</li> <li>The existing supply is expected to fully meet the regional demand for warehouse space up to 2040 under warehouse space forecasting model assumptions. This is one of the possible best case scenarios.</li> </ul> | <ul> <li>Includes implications in Scenario 1.</li> <li>Local governments would see more renovation-related construction in areas where there are obsolete buildings.</li> <li>Local governments decide to preserve the existing land use designation for warehouse parcels.</li> </ul> | • Same implications as in Scenario 1.                                                              | • Same implications as in Scenario 1.                                                                              | • Same implications as in Scenario 1.                                                  |
|                     |                                                                                        | <ul> <li>Approximately 37% increase in truck trips and 34%<br/>increase in truck VMT over 2014 level, however,<br/>substantial drop in truck emissions under warehouse<br/>space forecasting model assumptions.</li> </ul>                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                        |                                                                                                    |                                                                                                                    |                                                                                        |

# Table 2.12 Policy and Decision-Making Implications to Stakeholders under Alternate Scenarios

Southern California Association of Governments Industrial Warehousing Study

| Alternate<br>Number | Alternate<br>Scenario Name                                                     | SCAG Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Local Governments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Beneficial Cargo Owners (BCO)                                                                                                                                                                     | Real E                                                   |
|---------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Ef<br>In            | Baseline Scenario plus<br>Ifficiency Gain plus<br>Increased Mega RDCs<br>Share | <ul> <li>Includes implications in Scenario 1 in terms of regional economic competitiveness.</li> <li>Mega RDCs would help BCOs achieve economies of scale, thus, would improve regional economic competitiveness (see Sections 1.1 and 1.3 and Task 3 Report).</li> <li>The existing supply is expected to fully meet the regional demand for warehouse space up to 2040 under warehouse space forecasting model assumptions. This is one of the possible best case scenarios.</li> <li>Approximately 29% increase in truck trips and 26% increase in truck VMT over 2014 level, however, substantial drop in truck emissions under warehouse space forecasting model assumptions.</li> </ul> | <ul> <li>Includes implications in Scenario 1.</li> <li>This would create economic development<br/>opportunities, but also concentrated local traffic<br/>impacts in municipalities in Inland Empire and<br/>northern reaches of Los Angeles County the most, as<br/>there are large amounts of developable space and<br/>contains large-sized parcels to accommodate<br/>building sizes of 500,000 square feet or more.</li> <li>However, a few mega RDC developments also may<br/>occur in other submarket areas where there is<br/>developable space, compatible land uses, and local<br/>support.</li> <li>Local governments develop policy and ordinances to<br/>support development of mega RDCs.</li> </ul> | <ul> <li>Includes implications in<br/>Scenario 1.</li> <li>Large BCOs would benefit from<br/>greater supply chain productivity<br/>with the use of larger, more<br/>modern facilities.</li> </ul> | Developer<br>would see<br>submarke<br>developab<br>RDCs. |

Southern California Association of Governments Industrial Warehousing Study

### l Estate Developers

pers of large facilities see more opportunities in rket areas with pable space for mega

### Warehouse Operators

• Operators of large facilities would see more opportunities in submarket areas with new mega RDC developments.

| Alternate<br>Number | Alternate<br>Scenario Name                                                                              | SCAG Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Local Governments                                                                                                                                                                                                                                                                                                                    | Beneficial Cargo Owners (BCO)                                                                                                                                                                                                                                                                                                                                      | Real Esta                                                                            |
|---------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 4                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Increased Crossdock<br>Transloading Share             | <ul> <li>Includes implications in Scenario 1 in terms of regional economic competitiveness.</li> <li>Crossdock transloading facilities would support a growing segment of port-related transloading customers. Through a high cargo turnover rate, they would also reduce demand for port-related warehouse space (see Sections 1.1 and 1.3 and Task 3 Report).</li> <li>A shortfall of 97 million square feet of warehouse space forecasting model assumptions.</li> <li>Approximately 33% increase in truck trips and 31% increase in truck VMT over 2014 level, however, substantial drop in truck emissions under warehouse space forecasting model assumptions.</li> </ul>                                                     | <ul> <li>Includes implications in Scenario 1.</li> <li>Local jurisdictions near the ports would see an increase in demand for crossdock transloading, and associated truck traffic.</li> <li>Local jurisdictions near the ports decide to preserve the existing land use designation for crossdock transloading purposes.</li> </ul> | <ul> <li>Includes implications in<br/>Scenario 1.</li> <li>This scenario is primarily BCO<br/>driven as part of BCO's overall<br/>supply chain strategy. If more<br/>crossdock transloading is<br/>accommodated, it could make<br/>Southern California more<br/>attractive to BCOs using<br/>crossdock transloading as their<br/>supply chain strategy.</li> </ul> | <ul> <li>Developers v<br/>increased op<br/>crossdock tra<br/>submarket ar</li> </ul> |
| 5                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Increased E-commerce and<br>Fulfillment Centers Share | <ul> <li>Includes implications in Scenario 1 in terms of regional economic competitiveness.</li> <li>Fulfillment centers would support a growing segment of e-commerce customers who require same day or two-day delivery (see Sections 1.1, 1.3 and Task 3 Report).</li> <li>The existing supply is expected to fully meet the regional demand for warehouse space up to 2040 under warehouse space forecasting model assumptions. This is one of the possible best case scenarios.</li> <li>Approximately 28% increase in truck trips and 26% increase in truck VMT over 2014 level, however, substantial drop in truck emissions under warehouse space forecasting model assumptions. This is the best case scenario.</li> </ul> | <ul> <li>Includes implications in Scenarios 1 and 3.</li> <li>In fulfillment centers that are highly specialized or automated, skilled workforce opportunities may benefit local jurisdictions.</li> </ul>                                                                                                                           | <ul> <li>Includes implications in<br/>Scenarios 1 and 3</li> <li>By providing same day or two-<br/>day delivery service, BCOs<br/>would become more attractive to<br/>e-commerce customers.</li> </ul>                                                                                                                                                             | <ul> <li>Includes imp<br/>Scenarios 1 a</li> </ul>                                   |

## Table 2.12 Policy and Decision-Making Implications to Stakeholders under Alternate Scenarios (continued)

Southern California Association of Governments Industrial Warehousing Study

### state Developers

s would have opportunities for transload facilities in t areas near the ports.

#### Warehouse Operators

• Crossdock transload-related third-party logistics (3PL) operators would likely see more business in submarket areas near the ports.

nplications in 1 and 3

- Includes implications in Scenario 1.
- Operators of large facilities, but workforce specialized in fulfillment center operations would see more opportunities in submarket areas with new mega RDC developments.

| Alternate<br>Number | Alternate<br>Scenario Name                                                                 | SCAG Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Local Governments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Beneficial Cargo Owners (BCO)                                                                                                                                                                                                                                               | Real Esta                                                                                                                       |
|---------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 6                   | Baseline Scenario plus<br>Efficiency Gain plus Lower<br>Border Crossing Growth<br>Scenario | <ul> <li>Includes implications in Scenario 1 in terms of regional economic competitiveness.</li> <li>This scenario reflects SCAG's alternate freight forecast for border-crossing cargo, which is lower than the baseline scenario. This would reduce demand for border-crossing-related warehouse space, but increase demand for port-related warehouse space (see Section 1.3 and SCAG Goods Movement Border Crossing Study and Analysis – Phase II Report).</li> <li>A shortfall of 132 million square feet of warehouse space is expected by 2040 under warehouse space forecasting model assumptions.</li> <li>Approximately 33% increase in truck trips and 30% increase in truck VMT over 2014 level, however, substantial drop in truck emissions under warehouse space forecasting model assumptions.</li> </ul> | <ul> <li>Includes implications in Scenario 1.</li> <li>Cities in Imperial County would see less economic development opportunities than the baseline scenario.</li> <li>Communities closer to the ports could see rise in traffic levels in the short term, but on the long term, the impacts would be similar to the baseline scenario. Communities along the Mexico-U.S. border would see an increase in traffic levels lower than the baseline scenario both in the short and long term.</li> </ul> | <ul> <li>Includes implications in<br/>Scenario 1.</li> <li>BCOs would have reduced<br/>benefits of the North American<br/>Free Trade Agreement (NAFTA)<br/>trade benefits, as the overall<br/>transportation cost will be higher<br/>than the baseline scenario.</li> </ul> | <ul> <li>Includes imp<br/>Scenario 1.</li> <li>Developers n<br/>increase in do<br/>warehousing<br/>to attract carged</li> </ul> |

Southern California Association of Governments Industrial Warehousing Study

| Estate Developers                                                                           | Warehouse Operators                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| implications in<br>o 1.                                                                     | <ul> <li>Includes implications in<br/>Scenario 1.</li> </ul>                                                                                                                                                  |
| ers might see a slower<br>in demand for<br>using in Imperial County<br>t cargo from Mexico. | <ul> <li>Although port-related<br/>warehouse operations near<br/>San Pedro Bay Ports would see<br/>a rise, the decline in demand for<br/>border-crossing-related<br/>warehouse operations would be</li> </ul> |

replaced by domestic warehouse operations.

| Alternate<br>Number | Alternate<br>Scenario Name                                                                  | SCAG Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Local Governments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Beneficial Cargo Owners (BCO)                                                                                                                                                                                                                                            | Real Estate Developers                                                                                                                                                                             | Warehouse Operators                                                                                                                                                                                                                                                                                                                               |
|---------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7                   | Baseline Scenario plus<br>Efficiency Gain plus Higher<br>Border Crossing Growth<br>Scenario | <ul> <li>Includes implications in Scenario 1 in terms of regional economic competitiveness.</li> <li>This scenario reflects SCAG's alternate freight forecast for border-crossing cargo, which is higher than the baseline scenario. This would increase demand for border-crossing-related warehouse space, but reduce demand for port-related warehouse space (see Section 1.3 and SCAG Goods Movement Border Crossing Study and Analysis – Phase II Report).</li> <li>A shortfall of 120 million square feet of warehouse space is expected by 2040 under warehouse space forecasting model assumptions.</li> <li>Approximately 34% increase in truck trips and 31% increase in truck VMT over 2014 level, however, substantial drop in truck emissions under warehouse space forecasting model assumptions.</li> </ul> | <ul> <li>Includes implications in Scenario 1.</li> <li>Cities in Imperial County would see more economic development opportunities than the baseline scenario.</li> <li>Communities closer to the ports could see lower traffic levels in the short term, but on the long term, the impacts would be similar to the baseline scenario. Communities along the Mexico-U.S. border would see an increase in traffic levels higher than the baseline scenario both in the short and long term.</li> </ul>                         | <ul> <li>Includes implications in Scenario 1</li> <li>BCOs would have increased benefits of NAFTA trade benefits as supply chain benefits (such as ease of quality control and lower overall transportation cost), will be higher than the baseline scenario.</li> </ul> | <ul> <li>Includes implications in Scenario<br/>1</li> <li>Developers might see a faster<br/>increase in demand for<br/>warehousing in Imperial County<br/>to attract cargo from Mexico.</li> </ul> | <ul> <li>Includes implications in Scenario         <ol> <li>Although port-related             warehouse operations near San             Pedro Bay Ports would see a             decline, the demand would be             replaced with border crossing-             related and domestic warehouse             operations.</li> </ol> </li> </ul> |
| 8                   | Baseline Scenario plus<br>Efficiency Gain plus<br>Increased Developable<br>Space            | <ul> <li>Includes implications in Scenario 1 in terms of regional economic competitiveness.</li> <li>This scenario reflects some of the local governments' recent approval of development proposals and tentative land use conversions. This would delay the projected year when the region would start experiencing a warehouse supply shortfall.</li> <li>A shortfall of 77 million square feet of warehouse space is expected by 2040 under warehouse space forecasting model assumptions.</li> <li>Approximately 38% increase in truck trips and 35% increase in truck VMT over 2014 level, however, substantial drop in truck emissions under warehouse space forecasting model assumptions. This is the worst case scenario.</li> </ul>                                                                              | <ul> <li>Includes implications in Scenario 1.</li> <li>The additional land for warehousing is assumed to be available in eastern part of Inland Empire. Travel impacts would increase due to added traffic from facilities that are anticipated to be built in this scenario.</li> <li>This scenario may impose a number of policy considerations to local governments as it assumes land use type conversions, potential traffic increase, and transportation facility adequacy to handle increased traffic, etc.</li> </ul> | <ul> <li>Includes implications in<br/>Scenario 1.</li> <li>BCOs will have more choices<br/>and more warehouse capacity to<br/>work with.</li> </ul>                                                                                                                      | <ul> <li>Includes implications in<br/>Scenario 1.</li> <li>Real estate developers will<br/>benefit because of greater<br/>development opportunities.</li> </ul>                                    | <ul> <li>Includes implications in<br/>Scenario 1.</li> <li>Warehouse operators will<br/>benefit because of greater<br/>growth opportunities.</li> </ul>                                                                                                                                                                                           |

# Table 2.12 Policy and Decision-Making Implications to Stakeholders under Alternate Scenarios (continued)

Source: Cambridge Systematics, Inc.

Southern California Association of Governments Industrial Warehousing Study

Southern California Association of Governments Industrial Warehousing Study



Southern California Association of Governments 900 Wilshire Blvd., Ste. 1700 Los Angeles, CA 90017 www.scag.ca.gov